The Gaussian Naive Bayes classifier or Naive Bayes, is a technique that simplifies predictive modelling

It frequently yields very accurate and stable models with
relatively small sample sets. The fundamental assumption of Nave Bayes is that all independent variable

tasks and avoids the dimensionality curse.

Exp 5 - Naive Bayes Classifier

February 11, 2022

characteristics are conditionally independent.

1 Experimental Description

1.1 Objective

To perform Naive Bayesian classifier on a set of documents that needs to be classified. Find the conditional
probability of attributes of the training data using Bayes Theorem by following the steps of the algorithm as
mentioned in the experiment. Compute accuracy, precision, and recall of the generated model using the test

dataset.

1.2 Algorithm

1.

Ut

Convert the given dataset into a frequency table.

2. Create a likelihood table by finding the probabilities.
3.
4

Calculate the posterior probability of each feature with respect to the class.

. If for a certain feature the probability evaluates to zero use feature smoothing for correction.

Classify the example into the class for which the probability is highest.

1.3 Procedure

In Naive Bayes for document classification, we extract numerical features from text content by:

o Tokenizing strings and giving an integer ID for each possible token.

Counting the occurrences of tokens in each document.

o Treating each token occurrence frequency as a feature.

o Considering the vector of all the token frequencies (for a given document) as a multivariate sample.

1.4 System Requirements

Windows/Linux OS/Mac OS with R. Required packages are tm, Snowball, wordcloud, €1071 and caret.

1.5 Dataset Summary

For this project, we obtained structured data of SMS messages in a CSV format having 2 variables, namely,
‘category’ and ‘message’. The dataset consists of 87% ham messages and 13% spam messages. message
contains the SMS text to be classified, and category contains information on message type (spam or ham).
There are 5572 rows in the original dataset.

2 Code and Output

rm(1s(O)
version$version.string

[1] "R version 4.2.0 (2022-04-22 ucrt)"

Importing data
sms_raw <- read.csv("spam.csv", FALSE, FALSE)

Manipulating data

sms_raw <- sms_rawl[,1:2]
colnames(sms_raw) <- c("Type", "Text")
sms_raw$Type <- factor(sms_raw$Type)

Checking the structure of the dataset
str(sms_raw)

'data.frame': 5573 obs. of 2 variables:

¢ Type: Factor w/ 3 levels "Category","ham",..: 1223223223 ...

¢ Text: chr "Message" "Go until jurong point, crazy.. Available only in bugis n great
Checking the number of "Spam" and "Ham" messages

table (sms_raw$Type)

##
Category ham spam
1 4825 747

prop.table(table(sms_raw$Type))

##
Category ham spam
0.0001794366 0.8657814463 0.1340391172

Install the "tm" package by uncommenting and running the following command
install.packages("tm")

Loading the "tm" package
library(tm)

Loading required package: NLP

Creating a volatile corpus which is a collection of texts
sms_corpus <- VCorpus(VectorSource (sms_raw$Text))

Printing corpus
Sms_corpus

<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): O

Content:

documents:

5573

Checking the text inm some messages and their associated label
sms_corpus [5:8]

<<VCorpus>>

Metadata:
Content:

sms_raw$Type [5:8]

[1] ham ham

spam ham

Levels: Category ham spam

Creating a copy of the corpus
corpus_clean <- sms_corpus

Removing numbers
corpus_clean <- tm_map(

Removing punctuation
corpus_clean <- tm_map(

Printing stop words

stopwords ()

[1] min

#it [6] "our"

[11] "yours"
[16] "his"

[21] "herself"
[26] "them"

[31] "which"
[36] "these"
[41] "was"

[46] "have"

[51] "does"

[56] "could"
[61] "she's"
[66] "you've"
[71] "he'd"

[76] "you'll"
[81] "isn't"
[86] "haven't"
[91] "won't"
[96] "cannot"
[101] "who's"
[106] "where's"
[111] "the"

[116] "because"
[121] "at"

[126] "against"
[131] "before"
[136] "from"

[141] "on"

[146] "further"
[151] "when"

|Imell

"ours"
"yourself"
"himself"
n lt n
"their"

who
"those"
"were"
"has"
"did"
"ought"
"it's"
"we've"
"she'd"
"he'1ll"
"aren't"
"hadn't"
"wouldn't"
"couldn't"
"what's"
"why's"
"and"

n as n

|Ibyll
"between"
"after"
|Iupll
"off"
"then"
"where"

corpus_clean,

corpus_clean,

|Imyll
"ourselves"
"yourselves"
"she
n ltS n
"theirs"

"whom"
|Iamll

|Ibell
"had"
"doing"

n 1 1] mll
"we're"
"they've"
"we'd"
"she'll"
"wasn't"
"doesn't"
"shan't"
"mustn't"
"here's"
"how's"
"but"
"until"
"for"
"into"
"above"
"down"
"over"
"once"
|Iwhyll

corpus specific: O, document level (indexed): O
documents: 4

removeNumbers)

"myself"
|Iyoull

|Ihell

"her"
"itself"
"themselves"
"this"

|IiS|I
"been"
"having"
"would"
"you're"
"they're"
|Ii 1 dll
"they'd"
"we'll"
"weren't"
"don't"
"shouldn't"
"let's"
"there's"
|Iall

|Iif|l
"while"
"with"
"through"
"below"
|Iinll
"under"
"here"
"how"

removePunctuation)

|I‘I"e n

"your"
"him"

"hers"
"they"
"what"
"that"

are
"being"
|Idoll
"should"
"he's"
"i've"
"you'd"
"itlan
"they'll"
"hasn't"
"didn't"
"can't"
"that's"
"when's"

|Ianll

n or n

n of n
"about"
"during"
"tO n

n out n
"again"
"there"
n all n

[156] "any" "both" "each" "few" "more"

[161] "most" "other" "some" "such" "no"
[166] Ilnorll Ilnotll Ilonlyll Ilownll Ilsamell
[171] "so" "than" "too" "very"

Removing stop words from the corpus
corpus_clean <- tm_map(x = corpus_clean, FUN = removeWords, stopwords())

Install the "SnowballC" package by uncommenting and running the following command
install.packages ("SnowballC")

Loading package
library(SnowballC)

Testing the package
wordStem(words = c("cooks", "cooking", "cooked"))

[1] "cook" "cook" "cook"
Stemming words in corpus

corpus_clean <- tm_map(x = corpus_clean, FUN = stemDocument)

Removing extra white spaces
corpus_clean <- tm_map(x = corpus_clean, FUN

stripWhitespace)

Creating Document Term Matriz (DTM)
DTM <- DocumentTermMatrix(x = corpus_clean)

Viewing the generated matriz
DTM

<<DocumentTermMatrix (documents: 5573, terms: 7241)>>
Non-/sparse entries: 46148/40307945

Sparsity : 100%
Maximal term length: 40
Weighting : term frequency (tf)

Install the "wordcloud" package by uncommenting and running the following command
install.packages ("wordcloud")

Loading package
library(wordcloud)

Creating word cloud for the whole dataset
wordcloud (words = corpus_clean,
min.freq = 100, # Minimum number of times a word must be present
random.order = FALSE, # Arrange most frequent words in the center
color = (colors = c("#4575b4","#74add1", "#abd9e9", "#e0f3f8" , "#fee090", "#fdaeb1"
"#£46d43","#d73027")))

messag

much
and
work say phone

happi take '
miss tel| sorriwhat

later home
: claim
its wait
@ meet
85 the
! IItri ew
great Ca repli
- still MY
D stopthank
= night
cant lor -
week
thingthat o tx

hope Zbackmobil friend
give p|swat
number

®
(O]
©

¢ today

Creating training dataset
DTM_train <- DTM[1:round(nrow(DTM)*0.80, 0),]

Creating test dataset
DTM_test <- DTM[(round(nrow(DTM)*0.80, 0)+1) :nrow(DTM),]

Creating vectors with labels for the training and test datasets
train_labels <- sms_raw[1l:round(nrow(sms_raw)*0.80, 0),]1$Type
test_labels <- sms_raw[(round(nrow(sms_raw)*0.80, 0)+1):nrow(DTM),]$Type

Checking the proportion of "ham" and "spam" in the training and test datasets
prop.table(table(train_labels))

train_labels
Category ham spam
0.0002243158 0.8647375505 0.1350381337

prop.table(table(test_labels))

test_labels
Category ham spam
0.0000000 0.8699552 0.1300448

Sub-setting most frequent words

threshold <- 0.1 # In percentage

min_freq = round(DTM$nrow* (threshold/100),0) # Calculate minimum frequency
min_freq

[1] 6

Creating vector of most frequent words
frequent_words <- findFreqTerms(x = DTM, lowfreq = min_freq)

Checking the structure of the generated vector
str(frequent_words)

chr [1:1293] "abiola" "abl" "about" "abt" "accept" "access" "accident"

Filtering both training and test DIMs
DTM_train_most_frequent <- DTM_train[, frequent_words]
DTM_test_most_frequent <- DTM_test[, frequent_words]

Checking dimension of both training and test DTM
dim(DTM_train_most_frequent)

[1] 4458 1293
dim(DTM_test_most_frequent)

[1] 1115 1293

Creating a function to output "Yes" 4if a word is present and "No" <if it is absent in the
document
is_present <- function(x) {

x <- ifelse(test = x > 0, yes = "Yes", no = "No")

}

Testing the function
x <- is_present(c(1, 0, 3, 4, 0, 0))
X

[1] IIYeSII IINOII IIYeSII IIYeSII IINOII IINOII

Applying is_present () function to training and test DIMs
DTM_train_most_frequent <- apply(X = DTM_train_most_frequent,
MARGIN = 2, # Apply function to columns

FUN = is_present) # Specify function to be used
DTM_test_most_frequent <- apply(X = DTM_test_most_frequent,
MARGIN = 2, # Apply function to columns

FUN = is_present) # Specify function to be used

Install the "el071" package by uncommenting and running the following command
install.packages("e1071")

Loading package
library(e1071)

Creating model using the training dataset
spam_classifier <- naiveBayes(x = DTM_train_most_frequent, y = train_labels)

Printing probability tables for some words
spam_classifier$tables$call

call
train_labels No Yes
#it Category 1.00000000 0.00000000

ham 0.94422827 0.05577173
spam 0.57308970 0.42691030

spam_classifier$tables$friend

friend

train_labels No Yes
#it Category 1.00000000 0.00000000
#it ham 0.98184176 0.01815824
#it spam 0.98172757 0.01827243

spam_classifier$tables$free

free

train_labels No Yes

#it Category 1.00000000 0.00000000

#it ham 0.98806744 0.01193256

#it spam 0.77574751 0.22425249

Making predictions on test dataset

test_predictions <- predict(spam_classifier, DTM_test_most_frequent)

Install the "caret” package by uncommenting and running the following command
install.packages("caret")

Loading caret package
library(caret)

Creating confusion matriz
confusionMatrix(test_predictions, test_labels, "spam",

c("Prediction", "Actual"))

Confusion Matrix and Statistics

##

Actual

Prediction Category ham spam

Category 0 0 0

ham 0964 13

spam 0 6 132

##

Overall Statistics

##

Accuracy : 0.983

95% CI : (0.9735, 0.9897)

No Information Rate : 0.87

#it P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 0.9231

##

Mcnemar's Test P-Value : NA

##

Statistics by Class:

##

Class: Category Class: ham Class: spam
Sensitivity NA 0.9938 0.9103
Specificity 1 0.9103 0.9938

Pos Pred Value NA 0.9867 0.9565
Neg Pred Value NA 0.9565 0.9867
Prevalence 0 0.8700 0.1300
Detection Rate 0 0.8646 0.1184
Detection Prevalence 0 0.8762 0.1238
Balanced Accuracy NA 0.9521 0.9521

Calculating precision and recall
temp = as.matrix(table(test_labels, test_predictions))
precision <- diag(temp)/colSums (temp)

precision

Category ham spam
NaN 0.9866940 0.9565217
recall <- diag(temp)/rowSums (temp)
recall

Category ham spam
NaN 0.9938144 0.9103448

From the output, we can interpret the following:

o The algorithm constructed tables of probabilities that were used to estimate the likelihood of new
examples belonging to various classes and gave an accuracy of 98%.

o The model has a precision of 95.6% for spam messages and 98.6% for ham messages.

o The model has a recall of 91.0% for spam messages and 99.3% for ham messages.

3 Conclusion

Naive Bayes Classifier got implemented successfully over the given dataset.

