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1 Abstract

This study analyzes and forecasts daily INR-USD exchange rates from January 2000 to June 2024
using various time series models. Progressing from linear techniques like simple regression and
ARIMA to nonlinear approaches such as Threshold Autoregressive (TAR) and Smooth Transi-
tion Autoregressive (STAR) models, the research aims to capture the complex dynamics of for-
eign exchange markets. Through rigorous evaluation using diagnostic tools, including ACF and
PACF plots, residual analysis, and AIC, the study demonstrates that nonlinear models, particularly
STAR, provide superior fit and forecasting capability. A seven-day forecast generated using the
STAR model offers insights into short-term exchange rate trends, highlighting its effectiveness in
capturing historical patterns and providing reliable forecasts. This research contributes to finan-
cial time series analysis by emphasizing the importance of nonlinear modeling in understanding
and predicting forex market dynamics, with practical implications for traders, policymakers, and
researchers.
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2 Introduction

A wide range of tradings are happening in the currency exchange platform field. The INR-USD
exchange is one of the most occurring exchanges in the world. So, it is crucial to predict the
exchange rate equally for traders and analysts. There are a lot of time series models that can be
used for the analysis and prediction of foreign exchange rates. This study investigates the behavior
of daily exchange rates of the Indian rupee (INR) against the US dollar (USD) using time series
analysis. The exchange rate between the Indian Rupee (INR) and the United States Dollar (USD)
is a crucial indicator of economic health and international trade dynamics between India and the
United States. The INR-USD exchange rate represents the value of the Indian Rupee against
the United States Dollar. It determines the cost of exchanging Indian Rupees for U.S. Dollars
and vice versa, impacting trade, investment, and economic policies. The INR-USD exchange
rate fluctuations can significantly affect India’s economy by influencing import and export costs,
inflation rates, and foreign investment flows. This analysis delves into the daily noon exchange
rates of INR against USD, with data from the Federal Reserve Bank New York, accessed via
the FRED platform provided by the Federal Reserve Bank of St. Louis. The dataset covers the
period from January 2000 to June 2024, encompassing critical economic events and shifts that
have shaped the bilateral trade and investment landscape over the past decade. In this case study,
we use different linear and nonlinear models such as linear, Auto-Regressive, ARIMA, and STAR.
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3 Methodology

3.1 Data Collection
The INR-USD Exchange Rate dataset, which consists of the daily exchange rate of USD-INR, is
used for the analysis. The data are noon buying rates in New York. The data starts from January
3, 2000, to June 14, 2024. The data is recorded daily at 4 PM DST and is provided with a 7-day
frequency.

3.2 Data Sources
The data is sourced with the following descriptions:

• Name: H.10 Weekly Release [1]

• Provider: Federal Reserve Bank of New York

• Currency: INR-USD exchange rate

• Frequency: Daily

• Time Period: January 2000 to June 2024

The dataset consisted of USD exchange rates with various countries, but we focused on only the
INR-USD exchange rate.

3.3 Data Description
The dataset is stored in the CSV format and has the dimension of 6381 rows and two columns. The
description of headers/column names of the constructed dataset is given in the following table:

Table 1: Description of each header of the constructed dataset.

Attributes Description Data Type
Unique.Identifier.. The date of the recorded exchange rate. character
H10.H10.RXI N.B.IN The exchange rate of the day at noon. character

A random subset of size five is selected from the constructed dataset and shown below for
clarity.
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Table 2: A random subset of the dataset.

Unique.Identifier.. H10.H10.RXI N.B.IN
2000-01-03 43.5500
2000-02-29 43.6500
2003-12-29 45.6600
2004-02-10 45.2200
2004-02-17 45.2800

3.4 Data Preprocessing
Let us import the data and read the head of the data along with a summary of the data to see how
the data is distributed.

df <- read.csv("FRB_H10.csv")
head(df)
summary(df)

Figure 1: Exchange Rates of INR against USD

Figure 2: Summary of unprocessed data

As we can see, there is an extra row stating the contents of the row, and then only the original
data starts. So we shall be removing the first row. In the summary, we can see that both the data
values are in characters datatypes and not in their respective datatypes, so we shall also make them
into the date and numeric format. We also convert the column names to DATE and RATE for
easiness of calling them. These are done using the following commands along with a summary of
the data after preprocessing using the skim(x) function in the skimr package of R.

5



df <- df[-1,]
rownames(df) <- NULL
colnames(df) <- c("DATE", "RATE")
df$DATE <- as.Date(df$DATE)
df$RATE <- as.numeric(df$RATE)
skim(df)

Figure 3: Summary after cleaning

So we see that in the summary, after cleaning the dataset, there are almost 248 missing values
in it. We handle the missing values by applying linear interpolation using the code. And then, we
plot the data to see what the data looks like.

df$RATE <- na.approx(df$RATE, na.rm = FALSE)
ggplot(df, aes(x = DATE, y = RATE)) +

geom_line() +
labs(x = "Date",

y = "Rate") +
theme_minimal()
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Figure 4: Plot of data

From the plot, we can see that there is an increasing trend in the graph, providing insight into the
overall direction of the data. There are also considerable short-term fluctuations throughout the
period, indicating volatility.

3.5 Data Analysis

3.5.1 ACF and PACF Plots

The Autocorrelation function[2] measures the linear relationship between lagged values of a time
series. The equation is as follows:

rk =

∑T
t=k+1(xt − x̄)(xt−k − x̄)∑T

t=1(xt − x̄)2
=

Cov(xt, xt−k)

Var(xt)
(1)

where:

• T is the length of the time series,

• x̄ is the mean of the series,

• k is the lag.

The partial autocorrelation function (PACF) measures the correlation between time series ob-
servations separated by k time units, yt and yt−k, after removing the effects of all shorter lag
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correlations yt−1, yt−2, . . . , yt−(k−1). The PACF plot is a graphical representation of the correlation
of a time series with itself at different lags, after removing the effects of the previous lags.

Figure 5: ACF plot

Figure 6: PACF plot

The ACF and PACF plots of the data are given above. As we can see, the ACF plot has
significant auto-correlation at many lags that do not decay quickly, which are very high, that is,
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they are close to 1. There is also a slow decay in the ACF plot, which suggests that there is a trend
component. The lack of cyclical pattern in ACF states that there is no seasonality in the data. The
PACF plot shows a significant spike at lag 1 and then drops off dramatically. This is a characteristic
of an AR(1) process.

3.5.2 Linear Model

Let’s fit a linear model to the data. A linear model is used to describe the relationship between a
dependent variable and one or more independent variables by fitting a linear equation to the data.

lm_model <- lm(RATE ∼ DATE, data = df)
df$fitted <- predict(lm_model)
ggplot(df, aes(x = DATE, y = RATE)) +

geom_line() +
geom_line(aes(y = fitted), color = "red") +
labs(x = "Time", y = "RATE")

Figure 7: Linear model

In the figure the red line is the fitted values of the linear model, and the black one is the actual
data. We can see from the figure itself, that the linear model is not fitting the data very well. Even
though the linear model could capture the overall trend of the graph.
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Now let us look at the residuals of the model [7]. We can check the residuals of the model by
using the residuals(model) function in R. This function, when we pass the model as the parameter,
will provide us the residuals or error of the model. This is calculated using the difference between
the actual value and fitted values.

df$residuals <- residuals(lm_model)
ggplot(df, aes(x = DATE, y = residuals)) +

geom_line() +
labs(x = "Time", y = "Residuals") +
theme_minimal()

Figure 8: Residual plot of linear model

As we can see from the plot of the residuals [5], there is a significant difference between
the fitted values and the original data. The residuals keep ranging from -10 to 10. The model
specifically does not capture the early part of the data. This suggests that the linear model is not
the best fit for the data.

3.5.3 AR Model

Auto-Regressive models [2] are based on the idea that the current value of the series, yt, can be
explained as a function of p past values, yt−1, yt−2, . . . , yt−p where p determines the number of
steps into the past needed to forecast the current value. The general formula goes as follows:
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yt =

p∑
i=1

ϕiyt−i + ϵt (2)

where ϵt ∼ N (0, σ2) is independent identically distributed (iid) noise with mean 0 and variance
σ2, p represents the number of lag terms, and yt−i is the i-th lagged value in the data.
Let us try fitting an AR(1) model on the data. For this, we will be using the arima(x, order =
c(p,0,0), method) function, where x is the time series data, the p in the order parameter refers to
the number of AR coefficients and for method parameter we can use the conditional sum of squares
or maximum likelihood method. We here pass the data, specifying 1 AR coefficient which has to
be found out by maximum likelihood method[3].

ar1 <- arima(df$RATE, order = c(1,0,0), method = "ML")
summary(ar1)

Figure 9: AR(1) model

The coefficient of the AR(1) model is 0.9999, which is very near to one. This suggests that the
series is following a unit root process that is non-stationary, and we know that it has a trend. So,
we can say that the model does not fit the best for the data due to its near-unit root behavior.

3.5.4 ARIMA Model

An Auto-Regressive Integrated Moving Average (ARIMA) [2] model is specified by the following
three parameters: (p, d, q).

Auto-Regressive (AR) part:

• The auto-regressive part involves regressing the variable on its own lagged (past) values.

• The parameter p is the number of lag observations included in the model (the number of
terms in the auto-regressive part).
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Integrated (I) part:

• The integrated part involves differencing the raw observations to make the time series sta-
tionary (i.e., having constant mean and variance over time).

• The parameter d is the number of times the differencing is applied to make the series station-
ary.

Moving Average (MA) part:

• The moving average part involves modeling the error term as a linear combination of error
terms occurring contemporaneously and at various times in the past.

• The parameter q is the size of the moving average window (the number of terms in the
moving average part).

Let us fit an ARIMA(1,1,0) model on our given data. We are differencing the data to remove
the trend present in the data[3].

ar_d1 <- arima(df$RATE, order = c(1,1,0), method = "ML")
summary(ar_d1)

Figure 10: ARIMA(1,1,0) model summary

As we can see, the model coefficient is -0.0052 value. This coefficient was found using
the Maximum Likelihood Estimate method. Now let us check the residuals using checkresidu-
als(model) function in R, where we pass the model as a parameter.

checkresiduals(ar_d1)

12



Figure 11: Ljung Box Test of Residuals

Figure 12: Different residual plots of ARIMA(1,1,0) model

The function gives the results as shown above. Let us go through it one by one. The top plot
shows the plotting of the residuals. It provides us with an understanding of how well the model is
fitted, as we see that most residuals are clustered around zero with some occasional spikes. The
ACF plot of the residuals is provided in the bottom left of the figure. As we can see, most of
the lags fall within the confidence interval, suggesting that there is little auto-correlation. The few
values exceeding the confidence interval suggest that there is some internal structure that the model
could not capture very well.

Ljung-Box [5] test is a test used in time series analysis to assess whether the lagged values of
the residuals from a time series model exhibit significant auto-correlation up to a specified lag (null
hypothesis). Here in the above result, we can assess the following:

• Q*: It is the sum of squared auto-correlations of the residuals up to lag 10. This is the test
static calculated for the Ljung-Box test.
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• df: It represents the degrees of freedom, which is the difference in the number of lags used
with a number of parameters. It determines the number of auto-correlations that are being
tested.

• p-value: This is the probability associated with the test statistic. Here we have a very small
p-value (e.g., 6.669 × 10−13) suggests strong evidence to reject H0, i.e. there is significant
autocorrelation in the residuals.

As there is significant autocorrelation in the residuals, we can say that the model is not the best fit
for the given time series data. So we should go for nonlinear models such as TAR, STAR, etc.

3.5.5 TAR Model

Threshold Autoregressive (TAR) model [2] is a type of nonlinear time series model that incorpo-
rates a strict threshold to capture regime changes in the data. In TAR models, the regime switches
abruptly when the time series crosses a certain threshold.
The Threshold Autoregressive (TAR) model is defined as:

Xt =

{
ϕ1,0 +

∑p1
i=1 ϕ1,iXt−i + ϵ1,t if Xt−d ≤ γ

ϕ2,0 +
∑p2

i=1 ϕ2,iXt−i + ϵ2,t if Xt−d > γ
(3)

where:

• Xt is the time series data.

• ϕ1,0, ϕ2,0 are the intercept terms for the two regimes.

• p1, p2 are the number of lagged observations included in the model for each regime.

• ϕ1,i, ϕ2,i are the autoregressive coefficients for each regime.

• γ is the threshold value.

• ϵ1,t, ϵ2,t are the white noise error terms for each regime.

We can fit a TAR model for the data in R using the setar(x, m = 2, thDelay = 1,
model = "TAR") function from the tsDyn package in R, where:

• x is the time series data,

• m is the embedding dimension,

• thDelay is the time delay for the threshold variable,

• model is used to represent which model to use.
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tar_model <- setar(df$RATE, m = 2, thDelay = 1, model = "TAR")
summary(tar_model)

Figure 13: TAR model summary

We used the SETAR() function to fit a TAR model[3], and we got the following model. The
threshold value was found to be 44.52, and the estimates of each regime AR coefficients are given
too. As we can see in the summary, only 15.02% is in the lower regime, and the rest, that is
84.98%, are in the higher regime. So, the residuals range from −2.28 to 2.53.

Now let us look into the fitting of the model. We shall be separating the fitted values based on
the regime, and plotting the fitted values along the original data.
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threshold <- 44.52

fitted_values <- fitted.values(tar_model)

df$Fitted_RATE <- c(rep(NA, length(df$RATE) - length(fitted_values)),
fitted_values)

df$Regime <- ifelse(df$Fitted_RATE > threshold, 1, 2)

ggplot(df, aes(x = as.Date(DATE))) +
geom_line(aes(y = RATE), color = "red") +
geom_line(aes(y = Fitted_RATE, color = as.factor(Regime))) +
scale_color_manual(values = c("1" = "blue", "2" = "green")) +
geom_hline(yintercept = threshold, color = "black", size = 1) +
labs(x = "Date",

y = "RATE",
color = "Regime") +

theme_minimal() +
theme(legend.position = "none")

Figure 14: Fitting of TAR model

As we can see in the above graph, the fitted values almost precisely fit the original data. This
proves that the given model is a good fit for the data. For further understanding, let us look into
the ACF plot of residuals.
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Figure 15: ACF of TAR model residuals

The residuals of the plot have a very low correlation, stating that the TAR model captured the
complexities of the data well. There are only a few lags above the confidence interval. So, the
TAR model is a good fit for the data. We shall be seeing further forecasting using the model in the
results section.

3.5.6 STAR Model

Smooth Threshold Auto-Regressive (STAR) model [4] is a nonlinear time series model that incor-
porates smooth threshold functions to capture nonlinear relationships between the current observa-
tion and its lagged values. Unlike the hard threshold in Threshold Auto-Regressive (TAR) models,
where the regime switches abruptly at a certain threshold, the smooth threshold function allows
for gradual transitions between regimes. Common choices for S include logistic or exponential
functions.
The Smooth Threshold Auto-Regressive (STAR) model is defined as:

Xt = µ+

p∑
i=1

ϕi (Xt−i − γiS(Xt−i−1)) + ϵt (4)

where:
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• Xt is the time series at time t.

• µ is the intercept term.

• p is the number of lagged observations in the model.

• ϕi are the autoregressive coefficients.

• γi are the threshold parameters.

• S(·) is the smooth threshold function.

• ϵt is the white noise error term.

We can fit a STAR model for the data in R using the star(x, m=2, noRegimes, d=1, thDelay = 1,
sig = 0.05) function from the tsDyn package in R, where:

• x is the time series data,

• m is the embedding dimension,

• noRegimes is the maximum number of regimes,

• d is the time delay,

• thDelay is the time delay for the threshold variable,

• sig is the significance level.

star_model <- star(df$RATE, m = 3, noRegimes = 2, d = 1, thDelay = 1,
sig = 0.05)

Figure 16: STAR model

As seen in the fitting of the STAR model, the starting value of gamma is 72.07692, which
influences how sharply or gently the model’s regime shifts occur. The higher the gamma value, the
sharper the transition between regimes. The theta value is chosen as 44.50276, which determines
the point around which the transition between regimes occurs.

We shall now check into the fitted values of the model. We can get the model’s fitted values
using the fitted.values(model) function in R by passing the model into it. After plotting the values
alongside the original, we can see how well the model fits the data.
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fitted_values <- fitted.values(star_model)

combined_df <- data.frame(
Date = df$DATE,
Original_RATE = df$RATE,
Fitted_RATE = c(rep(NA, length(df$RATE) - length(fitted_values)),

fitted_values)
)

ggplot(combined_df, aes(x = Date)) +
geom_line(aes(y = Original_RATE, color = "Original")) +
geom_line(aes(y = Fitted_RATE, color = "Fitted")) +
scale_color_manual(values = c("Original" = "blue", "Fitted" = "red"))

+
labs(x = "Date",

y = "RATE",
color = "Legend") +

theme_minimal()

Figure 17: Fitted values of STAR model with original data

From the above graph, we can see that the fitted values of the STAR model fit the original data
very well, as the original data values are overlapped very well. So we can infer that the model is a
good fit for the data.

Let us look into the ACF plot of the model residuals to look into our inference further accu-
rately. As said before we will be using the ACF(data) function to plot the ACF plot.
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Figure 18: ACF of STAR model residuals

As we see from the plot above, there are fewer values that are crossing the confidence interval
compared to the plot of the residuals of the TAR model. This shows that it has an even better
understanding of the data than the TAR model. This model accurately fits the data. We shall
further look into forecasting using the model in the results section.
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4 Results

We could see that both the TAR model and STAR model fitted the data the best compared to other
linear models. Both the models fitted the data very well and the residuals of both models were very
low. The residuals of the models had very little auto-correlation in different lags, too.

4.1 Forecast using TAR model
Let us use the forecast(model, n.ahead=1) function to predict future values. We pass the model
and use the n.ahead parameter to specify how long the prediction should be. Then we shall be
plotting the forecast along with the original data to visualize how the future prediction will be.

forecasts <- predict(tar_model, n.ahead = 7)
print(forecasts)

Figure 19: TAR Forecast Values

These are the predictions for the next 7 days using both the TAR and STAR models. We can
see that both models provide almost similar results in prediction. Thus could state that both models
fit the data almost similarly.

Now, let us look into the plotting of the predicted values by combining them with the original
data.
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last_200_df <- tail(df, 200)

forecast_df <- data.frame(
Date = seq(max(as.Date(df$DATE)) + 1, by = "day", length.out = 7),
RATE = as.numeric(forecasts)

)

combined_df <- rbind(
data.frame(Date = last_200_df$DATE, RATE = last_200_df$RATE, Type = "

Original"),
data.frame(Date = forecast_df$Date, RATE = forecast_df$RATE, Type = "

Forecast")
)

ggplot(combined_df, aes(x = Date, y = RATE, color = Type)) +
geom_line() +
scale_color_manual(values = c("Original" = "blue", "Forecast" = "red"

)) +
labs(title= "STAR model forecast",

x = "Date",
y = "RATE",
color = "Legend") +

theme_minimal()

Figure 20: Forecasts of TAR model with original data
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Figure 21: Zoomed-in TAR forecast

4.2 Forecast using STAR model
Similar to the above forecasting, we can do the same for the STAR model. We shall predict the
next 7 forecasted values using the function and shall plot them.

forecasts <- predict(star_model, n.ahead = 7)
print(forecasts)

Figure 22: STAR model forecast values

For easy visualization, we opted only a few starting values of the original data.
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Figure 23: Forecasts of STAR model with original data

Figure 24: Zoomed-in STAR forecast

4.3 Model Evaluation
Here, we can see in the results that both of them give almost similar forecasts. This shows that both
models capture the trend similarly. Thus we can say that both the models have very good fitting
and forecasting of the data.

Now we can compare the models used using the Akaike Information Criterion (AIC) values of
the models using the AIC(model) function in R. AIC is used for the evaluation of a model to know
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how well the model works. The lower the AIC value, the better the model is. The AIC is computed
using the formula:

AIC = 2k − 2 ln(L) (5)
where k is the number of parameters in the model, and ln(L) is the log-likelihood of the model.

aic_ar_d1_model <- AIC(ar_d1)
aic_tar_model <- AIC(tar_model)
aic_star_model <- AIC(star_model)

print(paste("AIC for ARIMA(1,1,0) model:", aic_ar_d1_model))
print(paste("AIC for TAR model:", aic_tar_model))
print(paste("AIC for STAR model:", aic_star_model))

Figure 25: AIC values of the models

Now we can see that the STAR model has a lower AIC value compared to the TAR model,
stating that the STAR model is the better model over the TAR model. For further inference, we
can see the AIC value of the ARIMA(1,1,0) model also here. We can see how much better the AIC
value of the non-linear models is compared to that of the ARIMA model.
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5 Conclusion

This case study analyzed and forecasted daily prices of the INR-USD exchange rate from January
03, 2000, to June 16, 2024. Various time series models, including AR, ARIMA, and Threshold
Autoregressive (TAR) models, were used and evaluated to capture the financial changes in the
exchange rate. Linear models struggled to fit and capture the data relationship, whereas nonlinear
models like TAR and STAR fit the data well. The STAR model provided the lowest AIC values,
indicating it was superior to TAR for this dataset. The TAR model with two regimes closely
matched actual data, while both models effectively predicted trends not captured by linear models.
In conclusion, selecting an appropriate model is crucial for capturing data changes. Since most data
is nonlinear, further research in nonlinear time series forecasting is needed. This study emphasizes
the importance of nonlinear modeling for capturing complexity and enhancing prediction accuracy
in financial forecasting.
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