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1 Abstract

The volatility of Bitcoin prices has garnered significant interest from both researchers and
investors. This case study aims to analyse historical daily closing prices of Bitcoin, obtained
from Coinbase [1] and the Federal Reserve Bank of St. Louis [3], using statistical tools to
predict future prices. Predictions were made using both linear (ARIMA) and non-linear (TAR)
time series models. Model parameters were optimized for accuracy, and performance was
evaluated using metrics such as the Akaike Information Criterion (AIC) and Root Mean Square
Error (RMSE). Results were compared to assess the suitability of each model for forecasting
Bitcoin prices, providing insights into effective strategies for cryptocurrency market analysis
and prediction.
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2 Introduction

This report provides a detailed analysis of Bitcoin price dynamics from December 1, 2014, to
June 23, 2024, using daily closing prices obtained from Coinbase [1] through the Federal Re-
serve Bank of St. Louis’ FRED [3] platform. It explores Bitcoin’s volatility and unpredictability
through advanced time series models, including ARIMA and TAR, and assesses model perfor-
mance using metrics such as RMSE and AIC. The study offers insights into the cryptocurrency
market and its broader economic implications, aiming to provide a structured framework for
analysing digital asset data and enhancing decision-making for investors, policymakers, and
researchers.
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3 Methodology

3.1 Data Collection

3.1.1 Introduction

The dataset contains daily closing prices of Bitcoin in U.S. Dollars from Coinbase, spanning
December 1, 2014, to June 23, 2024, recorded at 5 PM PST. The documentation aims to
provide comprehensive details about the dataset for use in financial analysis, econometrics,
and cryptocurrency research. Primary objectives include time series analysis, statistical mod-
elling, market behaviour studies, investment analysis, and educational research. This dataset
is valuable for researchers, analysts, and enthusiasts studying Bitcoin market dynamics.

3.1.2 Data Sources

The following table shows the information about the dataset we used in our report (for reference
to the data source and its legal use, you can refer to [1] and [2], respectively).:

Data
Source

Year Unit Frequency

Coinbase
Bitcoin
(CBBT-
CUSD)
on
FRED.

2014-
2024

U.S. Dollars, Not
Seasonally Ad-
justed

Daily, 7-Day

Table 1: List of data sources used to construct the dataset.

3.1.3 Data Description

The dataset is in CSV format. The description of the dataset’s columns is given in the table
below:

Attributes Description Data
type

Date The date of the recorded Bitcoin price Character
CBBTCUSD Closing price of Bitcoin in U.S. Dollars at 5 PM

PST
Character

Table 2: Description of dataset.
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3.2 Data Analysis

Preprocessing the dataset involved the following steps:

• Loading the Data:

1 path = "CBBTCUSD.csv"

2 df = read.csv(path)

3 head(df)

Figure 1: First 6 values of the dataset

The first six values of the dataset. We can clearly see that there are some missing values.

• Inspecting the Data:

1 str(df)

Figure 2: summary of the Data

• Plotting of the Data:

1 plot(as.Date(df$DATE), as.double(df$CBBTCUSD), type = "l",xlab = "Date

", ylab = "Bitcoin Price (USD)",main = "Bitcoin Prices Over Time")
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Figure 3: Time Series Plot of Bitcoin Closing Prices

• Columns datatype, renaming, and handling missing values:

1 # Assign column names

2 colnames(df)= c("Date","Bitcoin")

3 # Convert the datatype

4 df$Date=as.Date(as.character(df$Date))
5 df$Bitcoin=as.double(as.character(df$Bitcoin))
6 # number of missing entries

7 cat("total number of missing values in tha entire Dataset is :",sum(is

.na(df)))

In the above code, we assigned the column names ”Date” and ”Bitcoin” to the data frame
df, converted the ”Date” column to date format, and the ”Bitcoin” column to numeric
format to ensure proper data handling. We also counted the number of missing values
(NA) in each dataset column.

Figure 4: Number of missing values

• Handling Missing Values: Missing values in the dataset were identified and replaced
using linear interpolation to ensure a continuous time series without gaps. A total of 35
missing values were filled using this technique.

1 df$Bitcoin <- na.approx(df$Bitcoin , rule =2)

For linear interpolation, the na.approx function was used with rule=2.
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• Subsetting the Data: The dataset was resized to focus on the period from 2021 to
2024. This was done to use newer, more variable data to make better predictions.

1 df <- df[df$Date >= as.Date("2021 -01 -01"), ]

• Transformation: We applied a log transformation to the Bitcoin column as it preserves
the proportional relationships between data points.

1 df$Bitcoin=log(df$Bitcoin)
2 ggplot(dframe , aes(x = Date , y = Bitcoin)) +geom_line()+xlab("Date")+

ylab("Bitcoin in USD")+labs(title = "Bitcoin Prices Over Time")

Figure 5: Plot of Bitcoin Closing Prices

• Summary Statistics: Descriptive statistics, such as mean, variance, and standard de-
viation, were computed.

The mean of the Bitcoin column of the Dataset is: 10.46837
Variance of the Bitcoin column of the Dataset is: 0.1590694
The standard Deviation of the Bitcoin column of the Dataset is: 0.3988351

1 cat("The Mean of the Bitcoin column of the Dataset is :",mean(df$
Bitcoin))

2 cat("\n Variance of the Bitcoin column of the Dataset is :",var(df$
Bitcoin))

3 cat("\n The Standard Deviation of the Bitcoin column of the Dataset is

:",sd(df$Bitcoin))

• Visualization: Time series plots (See figure 5), along with Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) plots, have been generated to visu-
alize the data and identify any temporal dependencies.
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1 ggplot(dframe , aes(x = Date , y = Bitcoin)) +geom_line()+xlab("Date")+

ylab("Bitcoin in USD")+labs(title = "Bitcoin Prices Over Time")

2 acf(dframe$Bitcoin ,main="ACF plot for Bitcoin values")

3 pacf(dframe$Bitcoin ,main="PACF plot for Bitcoin values")

Figure 6: ACF and PACF Plots

1. Plot ACF and PACF for your data.

2. Identify significant lags in ACF/PACF exceeding confidence intervals.

3.3 Modeling and Forecasting

Three different models were considered for time series analysis and forecasting:

3.3.1 ARIMA Model

• ARIMA Model Summary: The ARIMA model with parameters AR(1), differencing
of order 1, and MA(0) is represented by the following equation:

Yt − Yt−1 = c+ ϕ1(Yt−1 − Yt−2) + ϵt

where:

– Yt is the value of the time series at time t,

– ϕ1 is the autoregressive parameter,

– c is the constant term (intercept),

– ϵt is the error term at time t, assumed to be independently and identically distributed
(i.i.d.) with mean zero and constant variance.

Using Auto.arima, We get the values of the parameters of the ARIMAmodel i.e ARIMA(p,d,q)
which best fits the data, Here:
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– p = 1: Number of autoregressive (AR) terms, capturing the effect of one previous
value on the current value.

– d = 1: Degree of differencing, transforming the time series into a stationary series.

– q = 0: Number of moving average (MA) terms, assuming no moving average com-
ponent.

The ARIMA model integrates autoregressive (AR), differencing (I), and moving average
(MA) components to model and forecast time series data, accommodating trends and
autocorrelation structures effectively.

• Model Fitting: The ARIMA(1, 1, 0) model was fitted to the transformed Bitcoin data
with first-order differencing.

1 arima_model=auto.arima(dframe$Bitcoin)
2 summary(arima_model)

3 arima_fitted_val= fitted(arima_model)

4 plot(dframe$Bitcoin , col = ’red’, lwd = 1, main = "Fitted Vs Actual",

ylab = "Bitcoin value ($)",xlab="Date", type = "l")

5 lines(arima_fitted_val , col = "blue", lwd = 1)

6 legend(’bottomright ’, legend = c("Actual", "Fitted"), col = c("red", "

blue"), lwd = 2)

Figure 7: Arima Model Summary

auto.arima() simplifies model selection by automatically identifying and fitting the most
suitable ARIMA model based on the characteristics of the data. After fitting the model,
the forecasting equation obtained is

ŷt = −0.0364× yt

where ŷt represents the predicted values based on the model and yt denotes the trans-
formed Bitcoin data after 1st order differencing. The linear equation indicates a negative
relationship, where an increase in Bitcoin values leads to a predicted decrease in the
outcome, and vice versa.
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Figure 8: Model Fitting

• Residual Analysis: We plotted the residuals of the fitted model to assess its perfor-
mance.

1 plot(dframe$Date , arima_model$residuals ,main= "ARIMA Model ’s Residuals

",ylab="Residuals",xlab="Date",type="l")

Figure 9: Residuals Plots of ARIMA model

The residuals are centred around zero with relatively constant variance over time, indi-
cating no significant bias and consistent model performance.

3.3.2 Threshold Autoregressive (TAR) Model for 2 Regime

• Model Specification: The Threshold Autoregressive (TAR) model is a nonlinear time
series model that captures regime shifts or nonlinear behaviours in the data. It is particu-
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larly suited for situations where the data exhibit distinct periods of behaviour or different
response patterns based on past observations.

• Model Equation:

The TAR model used in this analysis can be described as follows:

yt =

{
µ1 + ϕ1yt−1 + ϵt if yt−1 ≤ θ

µ2 + ϕ2yt−1 + ϵt if yt−1 > θ

Where:

– yt represents the Bitcoin price at time t.

– µ1 and µ2 are intercepts for the lower and upper regimes, respectively.

– ϕ1 and ϕ2 denote autoregressive coefficients associated with the lower and upper
regimes.

– θ denotes the threshold value that determines the shift between regimes based on
the lagged value yt−1.

– ϵt represents the error term assumed to be white noise.

• Model Fitting for 2 regime Tar:

– The fitted model: Now, We will fit The 2 regime TAR model on the Bitcoin data
using the setar function from the tsDyn package in R:

1 tar_model <- setar(dframe$Bitcoin , m = 1, thDelay = 0, nthresh =

1, model = "TAR")

2 summary(tar_model1)

3 # tar model fitting plot with two regime

4 const.L <- coef(tar_model)["const.L"]

5 phiL.1 <- coef(tar_model)["phiL.1"]

6 const.H <- coef(tar_model)["const.H"]

7 phiH.1 <- coef(tar_model)["phiH.1"]

8 threshold <- tar_model$coefficients["th"]
9 regime1 <- numeric(length(dframe$Bitcoin))

10 regime2 <- numeric(length(dframe$Bitcoin))
11 for (i in 2: length(dframe$Bitcoin)) {if (dframe$Bitcoin[i - 1] <=

threshold) {regime1[i] <- const.L + phiL.1 * dframe$Bitcoin[i -

1]} else {regime2[i] <- const.H + phiH.1 * dframe$Bitcoin[i -

1] }}

12 plot(dframe$Date , dframe$Bitcoin , type = "l", col = "black",xlab =

"Date", ylab = "log of Bitcoin Value in $", main = "Fitting of

TAR Model and 2 Regime Separation Plot")

13 lines(dframe$Date , regime1 , col = "yellow")

14 lines(dframe$Date , regime2 , col = "green")

15 legend("top", legend = c("Bitcoin", "Regime 1", "Regime 2"), col

= c("black", "yellow", "green"), lty = 1, cex = 0.8)

16 abline(h = threshold , col = "red", lty = 2)

17 axis.Date(1, at = seq(min(dframe$Date), max(dframe$Date), by = "

year"))

11



Figure 10: tar model summary 2 regime

The code fits a TAR model (m = 2) to Bitcoin prices in data frame dframe, setting
thDelay = 0 for immediate threshold application. The summary displays coeffi-
cients, thresholds, and diagnostics.

ŷt =

{
0.0256225 + 0.9976059 · yt, if yt−1 ≤ 10.84

0.5247176 + 0.9523690 · yt, if yt−1 > 10.84

– Model Fitting: The TAR model with two regimes was fitted to the data with a
threshold of 10.471078:

The following equations define the TAR model:

∗ Regime 1: ŷt = 0.0256225 + 0.9976059 · yt
∗ Regime 2: ŷt = 0.5247176 + 0.9523690 · yt
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Figure 11: Model Fitting of TAR Model

• Residual Analysis: We will plot the residuals for the fitted Tar model of 2 regimes.

1 plot(residuals(tar_model1),ylab="Residuals",main="Residuals plot of

Tar model for 3 regimes")

Figure 12: Residuals of TAR Model

The residuals are centred around zero, and the relatively constant variance over time
indicates no significant bias and consistent model performance.

• Fitted Model observations:

– The value of Bitcoin exhibits significant volatility, frequently switching regimes dur-
ing periods such as 2021 and early 2022, but showing greater stability in late 2022
and throughout 2023.
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– The TAR model identifies different behaviours: in Regime 2 (above the threshold),
the value tends to trend upward or remain stable, while in Regime 1 (below the
threshold), it often trends downward or becomes more volatile.

3.3.3 Threshold Autoregressive (TAR) Model for 3 Regimes

• Model Equation: The TAR model used in this analysis can be described as follows:

yt =


µ1 + ϕ1yt−1 + ϵt if yt−1 ≤ θ1

µ2 + ϕ2yt−1 + ϵt if θ1 < yt−1 ≤ θ2

µ3 + ϕ3yt−1 + ϵt if yt−1 > θ2

Where:

– yt represents the Bitcoin price at time t.

– µ1, µ2, and µ3 intercepts for the low, middle, and high regimes, respectively.

– ϕ1, ϕ2, and ϕ3 denote autoregressive coefficients associated with the low, middle,
and high regimes.

– θ1 and θ2 denote the threshold values that determine the shift between regimes based
on the lagged value yt−1.

– ϵt represents the error term assumed to be white noise.

• Model Fitting for 3-regime TAR:

– The fitted model: The TAR model was fitted to the Bitcoin price data using the
setar function from the tsDyn package in R:

1 library(tsDyn)

2 tar_model1=setar(dframe$Bitcoin , m = 1, thDelay = 0, nthresh = 2,

model = "TAR")

3 summary(tar_model)
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Figure 13:

The above code fits a Threshold Autoregressive (TAR) model with 3 regimes (m = 3)
to the Bitcoin price series stored in the data frame dframe.

ŷt =


0.0567443 + 0.9944424 · yt−1, if yt−1 ≤ 10.37

0.5953270 + 0.9437478 · yt−1, if 10.37 < yt−1 ≤ 10.69

0.1858152 + 0.9830002 · yt−1, if yt−1 > 10.69

– Model Fitting: The TAR model with three regimes was fitted to the data with
thresholds of 10.37 and 10.69:

The following equations define the TAR model:

∗ Low regime: ŷt = 0.0567443 + 0.9944424 · yt−1

∗ Mid regime: ŷt = 0.5953270 + 0.9437478 · yt−1

∗ High regime: ŷt = 0.1858152 + 0.9830002 · yt−1
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Figure 14: Model Fitting of 3-Regime TAR Model

• Residual Analysis: We will plot the residuals of the fitted model to check how well our
model performs on the data.

1 plot(residuals(tar_model1),ylab="Residuals",main="Residuals plot of

Tar model for 3 regimes")

Figure 15: Residuals of 3-Regime TAR Model

The residuals are centred around zero with a relatively constant variance over time, indi-
cating no significant bias and consistent model performance.

• Fitted model observations:

– The graph (Figure 14) reveals significant volatility in Bitcoin prices, with frequent
regime switching, particularly around threshold values.
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– Bitcoin prices remained low and volatile in late 2022 and early 2023, showing high
volatility across all regimes in 2024, with high regimes trending upwards, low regimes
trending downwards or being volatile, and the mid regime serving as a transitional
phase.
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4 Results

4.1 Forecasting using ARIMA model:

We will now forecast the future value using the fitted ARIMA model.

1 library(tsDyn)

2 predictions <- forecast(arima_model , h = num)

3 point_forecast = predictions$mean
4 plot(dframe$Date ,( dframe$Bitcoin), col = ’red’, lwd = 2, main = "Actual Vs

Forecast", ylab = "Bitcoin value ($)",xlab="Date", type = "l",ylim=c

(8,12), xlim = as.Date(c("2021 -01 -11", "2024 -06 -23")))

5 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,(point_forecast), col =

"blue", lwd = 3)

6 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,(df[(nrow(dframe)+1):(
nrow(dframe)+num),]$Bitcoin), col = "green", lwd = 3)

7 legend(’bottomright ’, legend = c("Actual", "Forecasted","Rest Data"), col =

c("red", "blue","green"), lwd = 2)

Figure 16: Forecasting Plot
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Figure 17: Zoomed-in Forecasting Plot

Observations from the Plots:

• The ARIMA(1, 1, 0) model effectively captures the overall trend and short-term fluc-
tuations of Bitcoin values. For accuracy comparison, we can refer to a zoomed-in plot.
However, there is a slight difference between the actual and forecast plots (Figure 17).

4.2 Forecasting using Tar model for regime 3:

Having examined the forecasting plot using the ARIMA model, we will now perform forecasting
with the TAR model using three regimes.

1 tar_forecast1 <- predict(tar_model1 , n.ahead=num)

2 plot(dframe$Date , dframe$Bitcoin ,type="l",ylab="Bitcoin in USD",xlab="Date"

)

3 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,tar_forecast1 ,col="red"
,lwd =2)

4 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,(df[(nrow(dframe)+1):(
nrow(dframe)+num),]$Bitcoin), col = "green", lwd = 1)
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Figure 18: Forecasting Plot

Figure 19: Zoomed-in Forecasting Plot

Observations from the Plots:

• The TAR model with 3 regimes struggles to capture the overall trend and short-term
fluctuations of Bitcoin values, as shown by its lower accuracy in the zoomed-in plot
(Figure 19).

4.3 Forecasting using Tar model for regime 2:

We have examined forecasts from both the ARIMA model and the TAR model with three
regimes. To improve accuracy, we will now forecast using the TAR model with two regimes.
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1 tar_forecast <- predict(tar_model , n.ahead=num)

2 plot(dframe$Date , dframe$Bitcoin ,type="l",ylab="Bitcoin in USD",xlab="Date"

)

3 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,tar_forecast ,col="red",
lwd =2)

4 lines(df[(nrow(dframe)+1):(nrow(dframe)+num) ,]$Date ,(df[(nrow(dframe)+1):(
nrow(dframe)+num),]$Bitcoin), col = "green", lwd = 1)

Figure 20: Forecasting Plot

Figure 21: Zoomed-in Forecasting Plot

Observations from the Plots:

• The TAR model with 2 regimes effectively captures the overall trend and short-term
fluctuations of Bitcoin values, as shown by the improved accuracy in the zoomed-in plot
(Figure 21).
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4.4 Model Evaluation

The models were evaluated based on the following metrics:

• RMSE Calculation: The RMSE of the models was calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

where:

– yi is the observed value at time t,

– ŷi is the forecasted value at time t,

– N is the number of observations.

The RMSE quantifies the average magnitude of forecast errors, with a lower RMSE indi-
cating better model performance.

• AIC Calculation: The AIC of the models was calculated using the formula:

AIC = −2 logL+ 2k

where:

– L is the maximum likelihood of the model,

– k is the number of estimated parameters.

The AIC balances model fit and complexity, with a lower AIC indicating a better model
fit with fewer parameters.

• Root Mean Square Error (RMSE):

1 cat("ARIMA model :",rmse(arima_model))

2 cat("TAR model for 3 regimes : ",rmse(tar_model1))

3 cat("TAR model for 2 regimes :",rmse(tar_model))

– ARIMA model : 0.0207

– TAR model for 3 regimes : 0.09506

– TAR model for 2 regimes : 0.0129

• Akaike Information Criterion (AIC):

1 cat("ARIMA model :",aic(arima_model)

2 cat("TAR model for 3 regimes : ",aic(tar_model1)

3 cat("TAR model for 2 regimes :",aic(tar_model))

– ARIMA model : -4959.16

– TAR model for 3 regimes : -8519.58

– TAR model for 2 regimes : -8520.53
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• Model Performance:

Model Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

ARIMA Forecast 11.14674 11.14671 11.14671 11.14671 11.14671 11.14671
TAR (2 Regime) Forecast 11.13979 11.13391 11.12830 11.12297 11.11789 11.11305
TAR (3 Regime) Forecast 11.11431 11.08443 11.05623 11.02962 11.00451 10.98081
Actual Values 11.14629 11.15131 11.14895 11.11716 11.13124 11.10892

Table 3: Forecasted and Actual Values for the Next 6 Days
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5 Conclusion

This case study focused on analysing and forecasting the daily closing prices of Bitcoin in U.S.
Dollars from December 1, 2014, to June 23, 2024, using various time series models, including
ARIMA and Threshold Autoregressive (TAR) models with 2 and 3 regimes.

Key findings from the analysis include:

• Model Performance: The 2-regime TAR model exhibited the lowest RMSE (0.0129)
and best AIC (-8520.53), outperforming the ARIMA model and the 3-regime TAR model
in predictive accuracy and model parsimony.

• Forecasting Accuracy: The 2-regime TAR model provided the most robust short-term
forecasts, closely matching the actual data for the next 6 days, while the ARIMA model’s
forecasts remained largely unchanged and less dynamic.

• Regime Analysis: The 3-regime TAR model identified high, mid, and low regimes,
capturing Bitcoin’s nonlinear and volatile behaviour, but the 2-regime TAR model proved
more accurate and parsimonious.

• Nonlinear Dynamics and Volatility: TAR models effectively captured the nonlinear
dynamics and high volatility of Bitcoin prices, which linear models like ARIMA failed to
do.

• Model Selection and Complexity: The study highlighted the importance of selecting
appropriate models for financial time series, noting that simpler models like the 2-regime
TAR often provide more accurate and reliable forecasts than more complex models.

In conclusion, the 2-regime TAR model emerged as the most effective for forecasting Bit-
coin prices, balancing accuracy and simplicity, and underscoring the importance of nonlinear
modelling techniques for financial time series data.
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