
Solution Provider Name: Mrunali Mahesh Sawant (MCA Student)

College: V.P.Institute of Mangement Studies & Research, Sangli

R Version : R version 3.6.3

R studio : 1.3.1093

Introduction to Decision Making in R Programming

 Decision making is significant aspect in every programming language. To check the conditions in form

of TRUE and FALSE values we can get appropriate result with the help of decision making statements. R

supports a decision making ability to take a decision in case of providing result by satisfying condition. R

provides different decision making or conditional statements like IF, ELSE_IF.

 R language also provides the looping statements for getting result in from particular range by satisfying

the condition. The looping statements in R like FOR, WHILE and REPEAT etc. R supports a different

operators like operator like logical (&), logical (|), arithmetic operator like (+,*) and relational operator

like (==) etc. that can be used for in case of checking condition in decision making phase.

Vector: A vector is a basic data structure used in R programming. A vector stores the same type of

element, the types of element is may be an integer, float, string or character. A vector concept is same as

“Array” concept in procedural programming language and object oriented programming language. For

creating a vector in R, R provides c () function.

Data Frame: A data frame is two dimensional structure of data used in R. It is a special case of list

which contains equal length of components. It takes components from column and contents from rows.

We can create a data data frame suing data. Frame () function provided by R. Combine all vectors in list

using data. Frame () function followed by the vectors name separated by commas.

Read : A read() method used to read the contents of .csv file in R language. A read() followed by .csv file

name in double quotes read the information from csv file.

Note: R programming is the case sensitive language so we have to write commands as same as

commands provided by R.

For run all commands of script, select commands and press ctrl+enter.

Experiments:

Consider the following data set and solve the following problems.

EmpNo Age Height Weight Basic

Salary

Experience Location

101 45 6.2 67 10000 6.3 Sangli

102 23 4.7 89 6700 7.2 Satara

103 26 5.2 54 6400 2.5 Nashik

104 31 5.5 68 8400 7.5 Kolhapur

105 30 5.4 44 8450 4.8 Jalgao

106 22 4.9 56 8100 9.4 Pune

107 26 6.2 51 9500 3.5 Jalgao

108 24 4.6 55 15000 8.4 Satara

109 28 5.1 69 18450 9.0 Sangli

110 29 5.9 89 7400 4.6 Satara

111 48 5.4 95 25000 8.2 Pune

112 42 4.3 40 22000 9.4 Kolhapur

113 49 4.9 77 9000 1.5 Nashik

114 32 5.8 70 9400 1.6 Jalgoa

115 33 6.8 74 12400 2.7 Pune

116 46 6.2 60 45000 4.8 Satara

117 36 4.3 48 43000 8.7 Pune

118 35 5.9 59 17500 9.4 Nashik

119 32 5.5 66 18600 10.5 Kolhapur

120 27 4.5 80 17800 11.4 Pune

Introduction:-

 The purpose of this experiment is to understand the concept of reading contents of .csv file using

read command.

Procedure:

1. Open R studio take a new script.

2. Write rm(list=ls()) command on script to clear workspace.

3. Read EmpDetails.csv file using read command in R and store it result on

Employee_Information variable.

4. Print Employee_Information.

5. Run all commands by pressing ctrl+enter.

6. Save the script with name R_code_decision extension .r on desired location like

Excersice_1.r

Code and Result :-

Open R studio take a new script.

#1.open R studio and take new script

#1.1 open R studio and go to file option

#1.2 after selecting file option and click new File and after selecting new file another window is appeared

on screen in that select R script.

#1.3 the untitled R script in opened on screen.

Write rm(list=ls()) command on script to clear workspace

#2. Write rm(list=ls()) command in script for clearing all workspace.

rm(list=ls())

Read EmpDetails.csv file using read command in R and store the result of it on

Employee_Information variable

#3. read EmpDetails.csv file using read command and store it on Employee_Information variable

Employee_Information<-read.csv("EmpDetails.csv")

Print Employee_Information using print function.

#use print command to print contents of file EmpDetails.csv

print(Employee_Information)

Save this script using save option from file.

Save script Exercise_1.r using save option.

Output : -

Conclusion: -

 We can read the contents of .csv file in R using read() method in R .

1. Display employees whose age is between 30 to 35.

Introduction:

 The purpose of this experiment is to understand the concept of accessing elements within a range

using logical operator &. And use the subset () function for display values which satisfies the condition

written in subset () function.

Procedure:-

1. Create a variable as show_age . Create subset with condition Age>=30 & Age<=35

2. Print show_age

3. Run all commands by pressing ctrl+enter .

4. Save the script using save option from file.

Code And Result :-

Open R studio and open Excersice_1.r script

Create a variable as show_age . Create subset with condition Age>=30 & Age<=35

#Create a variable as show_age . Create subset with condition Age>=30 & Age<=35

show_age<-data.frame(subset(Employee_Information,Age>=30 & Age<=35))

Print show_age

#3. print show_age

print(show_age)

 Save the script Excersice_1.r on using save option..

Save script with name Exercise_1.r

Output –

Conclusion –

 We understand the concept of using logical operator & ‘AND’. We can use

subset () function to make a subset of given data. We can perform basic arithmetic operations on elements

using logical operator and make separate set of those operations result using subset () function.

2. Display employees whose salary >15000.

1. A relational > operator used when you want to display values greater than from particular value.

2. We can use subset() function to perform this kind of basic operations to get result in another

subset of data.

3. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept of conditional operator ‘>’ greater

than for performing operations and store a result in subset.

Procedure:-

1. Create a variable as show salary. Create subset with condition BasicSalary>15000

2. Print show_salary.

3. Run all commands by pressing ctrl+enter.

4. Save the script using save option from file.

Code And Result :-

Create a variable as show salary. Create subset with condition BasicSalary>15000

#Create a variable as show salary. Create subset with condition BasicSalary>15000

show_salary <-subset(Employee_Information,BasicSalary>15000)

Print show_salary

#3. print show_salary

print (show_salary)

 Save the script Excersice_1.r on using save option..

 Save script with name Excersice_1.r

Output –

 Conclusion –

We understand the concept of using relational operator > ‘Greater Than’ and storing a result of operation

in subset.

3. Display employees details whose EmpNo is even.

1. Arithmetic %% operator: - A %% operator used when you want to calculate reminder of value.

2. Relational == operator: - A ‘==’ exact equals to operator is used when display result when

resulted values are exactly equals to expected values.

3. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

4. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept of use of Relational ‘ %%’ modulus

operator and ‘==’ exact equals to operator.

Procedure:-

1. Open R studio open R_code_decision.r script.

2. Create a variable as show even. Create subset with condition for even number on EmpNo

element using %% and == operators.

3. Print show even.

4. Run all commands by pressing ctrl+enter.

5. Save the script using save option from file.

Code & Result:-

Open R studio and open Excersice_1.r script

Create a variable as show_even. Create subset with condition for even number on EmpNo element

using %% and == operators.

#1. Create a variable as show_even. Create subset with condition for even number on EmpNo element

using %% and == operators.

show_even<-subset (Employee_Information,EmpNo%%2==0)

Print show_even

#2. print show_even

print(show_even)

 Save the script Excersice_1.r on using save option..

Save script with name Excersice_1.r

Output –

Conclusion –

 We understand the concept of using arithmetic operator %% ‘Modulus operator’ and

relational ‘== ‘exact equals to ’ to performing logic of even numbers on elements .It shows result only

when given condition satisfies and storing a result of operation in subset.

4. Display employees whose height <5.5 and weight>60.

How to extract a values of elements by satisfying given conditions using relational operators ?

1. Relational > operator: - A greater than > operator used when you want to display value

greater than particular values specified in condition.

2. Relational < operator: - A less than > operator used when you want to display value less

than particular values specified in condition.

3. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

4. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept of use of Relational operators greater

than and less than.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Create a variable as show_height . Create subset with condition displaying

Height<5.5 .

3. Print show_height.

4. Create a variable as show_weight . Create subset with condition displaying

Weight>60 .

5. Print show_weight

6. Run all commands by pressing ctrl+enter .

7. Save the script using save option from file.

Code and Result:-

 Open R studio and open Excersice_1.r script

Create a variable as show_height . Create subset with condition displaying Height<5.5 .

#2. Create a variable as show_height . Create subset with condition for displaying height<5.5.

show_height<-subset(Employee_Information,Height<5.5)

Print show_height

#3. print show_height

print(show_height)

Create a variable as show_weight . Create subset with condition displaying Weight>60 .

 #4. Create a variable as show_weight . Create subset with condition for displaying weight>60.

show_weight<-subset(Employee_Information,Weight>60)

Print show_weight

#5. print show_weight

print(show_weight)

 Save the script Excersice_1.r on using save option..

 Save script with name Excersice_1.r

Output –

Conclusion –

 We understand the concept of using relational operators like greater than “>” and less

than “<”.It shows result only when given condition satisfies and storing a result of operation in subset.

5. Check employees height, weight and display whether persons fit, overweight or underweight.

Introduction:

 The purpose of this experiment is to understand the concept of creating/ adding a new

column/element in data frame and use of decision statements and looping statements in R.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Create a variable temp and assign operation of converting height fit to meters.

3. Create a new element Height_in_meter in Employee_Information and assign temp variable

values to Height_in_meter.

4. Print Employee_Information$Height_in_meter

5. Create a variable temp1 and assign operation of making square of Height_in_meter element.

6. Print temp1

7. Create a new element Height_sqr in Employee_Information and assign temp1 variable values

to Height_sqr.

8. Print Employee_Information$Height_sqr

9. Create element BMI_ratio and assign operation of calculating BMI ration using Weight and

Height_sqr element.

10. print Employee_Information$BMI_ratio

11. View Employee_Information$BMI_ratio

12. In for loop use e1 variable and take range 1: nrow(Employee_Information) for whole dataset.

13. check condition using IF statement for fit , underweight and overweight

14. Add new columnn as a Result_of_BMI and add assign the value as Underweight when the

given condition is true.

15. Use else if statements to check whether the element satisfies a second condition when the first

condition is false.

16. Assign values as Fit to Result_of_BMI column when the given condition is true.

17. Use else to display else part.

18. Assign values as Overweight to Result_of_BMI column when the above conditions are false

and else part is executed.

19. Print Employee_Information data frame to check desired result.

20. View Employee_Information data frame to check desired result in tabular form.

21. Run all commands by pressing ctrl+enter.

22. Save the script using save option from file.

Code and Result:-

#1.Create a variable temp and assign operation of converting height fit to meters

temp<-Employee_Information$Height*0.3048

#2.Create a new element Height_in_meter in Employee_Information and assign temp variable values to

Height_in_meter.

Employee_Information$Height_in_meter<-temp

Print Employee_Information$Height_in_meter

#print Employee_Information$Height_in_meter

print(Employee_Information$Height_in_meter)

#3.Create a variable temp1 and assign operation of making square of Height_in_meter element.

temp1<-Employee_Information$Height_in_meter*2

Print temp1

#print temp1

print(temp1)

#4.Create a new element Height_sqr in Employee_Information and assign temp1 variable values to

Height_sqr.

Employee_Information$Height_sqr<-temp1

Print Employee_Information$Height_sqr

#print Employee_Information$Height_sqr

print (Employee_Information$Height_sqr)

#5. Create element BMI_ratio and assign operation of calculating BMI ration using Weight and

Height_sqr element.

Employee_Information$BMI_ratio<-

Employee_Information$Weight/Employee_Information$Height_sqr

Print Employee_Information$BMI_ratio

#print Employee_Information$BMI_ratio

print(Employee_Information$BMI_ratio)

View Employee_Information$BMI_ratio

#View Employee_Information$BMI_ratio

View(Employee_Information$BMI_ratio)

In for loop use e1 variable and take range 1:nrow(Employee_Information) for whole

dataset.

#6.In for loop use e1 variable and take range 1:nrow(Employee_Information) for whole dataset.

for(e1 in 1:nrow(Employee_Information))

{

Check condition using IF statement for fit , underweight and overweight

 #check condition using IF statement for fit , underweight and overweight

 if(Employee_Information$BMI[e1]>18.5)

 {

Add new columnn as a Result_of_BMI and add assign the value as Underweight when the

given condition is true.

 #Add new columnn as a Result_of_BMI and add assign the value as Underweight when the

given condition is true.

 Employee_Information$Result_of_BMI[e1]<-"UnderWeight"

 }

Use else if statements to check whether the element satisfies a second condition when the

first condition is false

 # Use else if statements to check whether the element satisfies a second condition when the

first condition is false.

 else if(Employee_Information$BMI[e1]>=18.5 Employee_Information$BMI[e1]<=24)

 {

Assign values as Fit to Result_of_BMI column when the given condition is true.

 #Assign values as Fit to Result_of_BMI column when the given condition is true.

 Employee_Information$Result_of_BMI[e1]<-"Fit"

 }

Use else to display else part.

 # Use else to display else part.

 else

 {

Assign values as Overweight to Result_of_BMI column when the above conditions are false

and else part is executed.

 #Assign values as Overweight to Result_of_BMI column when the above conditions are false

and else part is executed.

 Employee$Result_of_BMI[e1]<-"OverWeight

 }

}

Print Employee_Information data frame to check desired result.

#8.Print Employee_Information data frame to check desired result.

print(Employee_Information)

View Employee_Information data frame to check desired result in tabular form.

#9.Print Employee_Information data frame to check desired result.

View(Employee_Information)

 Save the script Excersise_1.r on using save option..

 Save script with name Excersice_1.r

Output – 1. BMI ratio :

2. For Fit, Overweight, and Underweight Condition:

Conclusion –

 We understand the concept of decision making statements and looping statements in R.

We can add the new column or element of data frame in existing data frame. We can perform different

operations in R is easily possible using R contents

.

6. Calculate gross salary of employees (TA is 10%, DA is 15%, HRA is 20%) on basic salary.

How to calculate Gross salary on the basis of given conditions using given dataset?

1. Gross Salary: - Gross salary is mathematical calculation for salary payable to employee after

adding different allowances and deducting some taxes from his basic salary.

Syntax for Gross Salary:

 Gross = BasicSalary-TA+DA+HRA

2. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept to calculate gross salary from given

data set.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Add new column as TA add calculate TA 10% on BasicSalary.

3. Add new column as DA add calculate DA 15% on BasicSalary.

4. Add new column as HRA add calculate HRA 20% on BasicSalary.

5. View Employee_Information

6. Add new column Gross_Salary and calculate Gross salary and assign the result to this

column.

7. View Emp_saldata data frame to get desired result.

8. Run all commands by pressing ctrl+enter.

9. Save the script using save option from file.

Code And Result :-

Add new column as TA add calculate TA 10% on BasicSalary.

#1.Add new column as TA add calculate TA 10% on BasicSalary.

Employee_Information$TA<-Employee_Information$BasicSalary*10/100

Add new column as DA add calculate DA 15% on BasicSalary.

#2.Add new column as DA add calculate DA 15% on BasicSalary.

Employee_Information$DA<-Employee_Information$BasicSalary*15/100

Add new column as HRA add calculate HRA 20% on BasicSalary.

#3.Add new column as HRA add calculate HRA 20% on BasicSalary.

Employee_Information$HRA<-Employee_Information$BasicSalary*20/100

View Employee_Information data frame to get desired result.

#4.View Employee_Information data frame

View (Employee_Information)

 Save the script Excersice_1.r on using save option..

 Save script with name Excersice_1.r

Output -

Conclusion –

 We can calculate the different formulas like gross easily using the R contents.

7. Display employee details whose gross salary is >20000.

How to extract data element value from data frame as per the condition using relational greater

than operator ‘>’ and how to store a result in newly created subset?

1. Relational > operator: - A logical > operator used when you want to display values greater than

from particular value.

2. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

3. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept of how to use relational greater than

operator to satisfy the condition and store the result in subset.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Take a new variable as salary and create a subset of Employee_Information whose

Gross_Salary >20000.

3. Print salary variable to get desire a result

4. Run all commands by pressing ctrl+enter .

5. Save the script using save option from file.

Code And Result :-

Take a new variable as salary and create a subset of Employee_Information whose

Gross_Salary >20000.

#Take a new variable as salary and create a subset of Employee_Information whose Gross_Salary

>20000.

 salary<-subset(Employee_Information,Gross_Salary>20000)

Print salary variable to get desire a result

 #Print salary variable to get desire a result

print(salary)

 Save the script Excersice_1.r on using save option..

 Save script with name Excersice_1.r

Output –

Conclusion –

We can extract the values of element by satisfying conditions with help of relational operators

and store their result in newly created subset.

8. Display employee details who’s having more than 5 years’ experience.

How to extract data element value from data frame as per the condition using relational greater

than operator ‘>’ and how to store a result in newly created subset?

4. Relational > operator: - A relational> operator used when you want to display values greater

than from particular value.

5. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

6. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept of how to use relational greater than

operator to satisfy the condition and store the result in subset.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Take a new variable as experience and create a subset of Employee_Information whose

Experience>5.

3. Print experience variable to get desire a result

4. Run all commands by pressing ctrl+enter.

5. Save the script using save option from file.

Code and Result:-

Open R studio and open Excersice_1.r script

#1.open R studio to open a script

Take a new variable as experience and create a subset of Employee_Information whose Experience

>5.

Take a new variable as experience and create a subset of Employee_Information whose Experience >5.

experience<-subset(Employee_Information,Experience>5)

Print experience variable to get desire a result

#Print experience variable to get desire a result

print(experience)

 Save the script Excersice_1.r on using save option.

 Save script with name Excersice_1.r

Output –

 Conclusion –

 We can extract the values of element by satisfying conditions with help of relational

operators and store their result in newly created subset.

9. Display employee details whose location is pune.

How to extract data element value from data frame as per the condition using relational exact equal

to operator ‘==’ and how to store a result in newly created subset?

1. Relational == operator: - A ‘==’ exact equals to operator is used when display result when

resulted values are exactly equals to expected values.

2. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

3. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept to use of relational operator exact

equals to operator by for satisfying condition and display results in form of subset.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Take a new variable as loc and create a subset of Employee_Information whose

Location==”Pune”.

3. Print loc variable to get desire a result

4. Run all commands by pressing ctrl+enter.

5. Save the script using save option from file.

Code and Result:-

Take a new variable as loc and create a subset of Employee_Information whose Location==Pune.

Take a new variable as loc and create a subset of Employee_Information whose Location==”Pune”.

loc<-subset(Employee_Information,Location==”Pune”)

Print loc variable to get desire result

#Print loc variable to get desire result

print(loc)

 Save the script Excersice_1.r on using save option.

Save script with name Excersice_1.r

Output –

Conclusion –

 We can extract the values of element by satisfying conditions with help of relational

operators exact equals to ‘== ’ and store their result in newly created subset.In case of checking condition

using operator by passing condition as a string value then the string value must be written in double

quotes “”.

10. Display employee details whose location other than Nashik.

How to extract data element value from data frame as per the condition using relational operator

not equal to operator ‘!=’ and how to store a result in newly created subset?

4. Relational!= operator :- A ‘==’ not equals to operator is used when display result when resulted

values are not equals to expected values.

5. We can use subset () function to perform this kind of basic operations to get result in another

subset of data.

6. For run all commands of script, select commands and press ctrl+enter.

Introduction:

 The purpose of this experiment is to understand the concept to use of relational operator not

equals to operator by for satisfying condition and display results in form of subset.

Procedure:-

1. Open R studio open Excersice_1.r script.

2. Take a new variable as other and create a subset of Employee_Information whose

Location!=”Nashik”.

3. Print other variable to get desire a result

4. Run all commands by pressing ctrl+enter.

5. Save the script using save option from file.

Code and Result:-

 Open R studio and open Excersice_1.r script

 #1.open R studio to open a script

#1.1 open R studio and go to file option

#1.2 after selecting file option and click open script and after selecting open script option another

window is appeared on screen in that you have to select script from source and click to open button.

#1.3 the Excersice_1.r R script in opened on screen.

Take a new variable as other and create a subset of Employee_Information whose

Location!=”Nashik”.

Take a new variable as other and create a subset of Employee_Information whose

Location!=”Nashik”.

 other<-subset(Employee_Information,Location!=”Nashik”)

Print other variable to get desire result

 #Print other variable to get desire result

print(other)

 Save the script Excersice_1.r on using save option..

 Save script with name Excersice_1.r

Output –

 Conclusion –

 We can use the relational operator “!=” not equals to for excluding values in given

condition. In case of checking condition using!= operator and the condition contains the string value then

the string value must be written in double quotes .

xxxxxxxxxxxxxx

