R Textbook Companion for
Introduction To Time Series And Forecasting
by Peter J. Brockwell, Richard A. Davis?

Created by
Ayush Kumar Nayak
B.Tech.
Mechanical Engineering
National Institute of Technology, Rourkela
Cross-Checked by
R TBC Team

February 5, 2026

"Funded by a grant from the National Mission on Education through ICT
- http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R
codes written in it can be downloaded from the ”Textbook Companion Project”
section at the website - https://r.fossee.in.

http://spoken-tutorial.org/NMEICT-Intro
https://r.fossee.in

Book Description

Title: Introduction To Time Series And Forecasting
Author: Peter J. Brockwell, Richard A. Davis
Publisher: Springer-verlag, New York, Usa
Edition: 3

Year: 2016

ISBN: ISBN 0-387-95351-5

R numbering policy used in this document and the relation to the above
book.

Exa Example (Solved example)
Eqgn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means
an R code whose theory is explained in Section 2.3 of the book.

Contents

List of R Codes

1 Introduction

2 Stationary Processes

3 ARMA Models

4 Spectral Analysis

5 Modeling and Forecasting with ARMA Processes
6 Nonstationary and Seasonal time series models

7 Time Series Models for Financial Data

8 Multivariate Time Series

9 State Space Models

10 Forecasting Techniques

11 Further Topics

17

20

26

34

45

55

60

66

71

73

List of R Codes

Exa1.1.1
Exa 1.1.3
Exa 114
Exa 1.1.5
Exa 1.1.6
Exa 1.3.3
Exa 1.3.4
Exa 1.3.5
Exa 1.3.6
Exa 1.4.6
Exa 1.5.1
Exa 1.5.2
Exa 1.5.3
Exa 1.54
Exa 1.5.5
Exa 1.6.1
Exa 2.4.3
Exa 2.4.4
Exa 2.5.5
Exa 3.1.1
Exa 3.1.2
Exa 3.1.3
Exa 3.2.4
Exa 3.2.8
Exa 3.2.9
Exa 3.3.4
Exa 3.3.5
Exa 4.1.2

Australian wine sales.
Accidental deaths
Signal Detection Problem . . .
Population of the USA
Strikes in USA
Random walk
Regression on population data
Level of Lake Huron

Harmonic regression on accidental deaths

Random noise
Moving average of strikes . . .

Smooth exponential and low pass filter

Differenced series

Deseasonalization and seasonal component
Estimation of seasonal component

ACF on signal data
MAT1 Process
ARI1 Process

Durbin Levinson and innovations algorithm

ARMA11
AR2 Process
ARMA21
General AR2 process
Overshorts series
The sunspot numbers

Numerical prediction of ARMA 23

h step prediction of ARMA . .
Linear combination of sinusoids

o 0O ~J O O Ot Ot

10
11
12
12
13
14
15
17
17
19
20
20
21
21
22
23
24
25
26

Exa 4.1.4
Exa 4.1.5
Exa 4.2.2
Exa 4.4.1
Exa 5.1.1
Exa 5.1.2
Exa 5.1.3
Exa 5.1.4
Exa 5.1.5
Exa 5.1.6
Exa 5.1.7
Exa 5.2.4
Exa 5.2.5
Exa 5.4.1
Exa 5.5.1
Exa 5.5.2
Exa 6.1.1
Exa 6.2.1
Exa 6.2.2
Exa 6.3.1
Exa 6.3.2
Exa 6.4.1
Exa 6.5.2
Exa 6.5.3
Exa 6.5.4
Exa 6.5.5
Exa 6.6.1
Exa 6.6.2
Exa 6.6.3
Exa 7.2.1
Exa 7.2.2
Exa 7.2.3
Exa 7.5.1
Exa 7.5.2
Exa 7.5.3
Exa 8.1.1
Exa 8.1.2
Exa 8.3.1

Spectral density of AR1
Spectral density of MA' 1
Sunspot numbers spectral density
Spectral density of AR2
The Dow Jones Utilities Index
MA 1 model forecasting
Dow jones utilities index using burg model
Modeling on Lake data
Estimations on Dow jones utilities index
Estimations on Lake data
Lake data analysis using Hannan algorithm
Burg and yule walker model comparison
Autofit on Lake data
Forecasts on overshorts data

FPE based selection of an AR model for Lake data

AICC based model selection
ARIMA 110 Process
Burg model on Australian wine data
Autofit for minimum AICC model
Test statistic on simulated data
Model parameters for overshorts data
ARIMA 1 1 0 model on Dow jones utilities index . . .
ACF of seasonal MA model
ACF of seasonal AR model
ACF of monthly accidental deaths data
Forecasting monthly accidental deaths
GLS based Model parameter estimation
Model parameters estimation for Lake data
Seat belt legislation
ARCH 1 Series
Fitting GARCH models to stock data
Fitting ARMA Models Driven by GARCH Noise . . .
Brownian motion
Poisson process L.
Compound Poisson Process
Dow Jones and All Ordinaries Indices
Sales with a leading indicator
Sample correlations

27
29
30
31
34
35
35
36
37
38
39
40
41
42
43
44
45
46
47
47
48
49
49
50
50
o1
o1
52
93
)
o6
o6
o7
o8
58
60
61
62

Exa 8.6.1 Multivariate models fitted on stock data
Exa 8.6.2 Multivariate models fitted on sales data .
Exa 8.6.3 VAR 1 model on stock data
Exa 9.2.1 Random walk plus noise model
Exa 9.5.2 International airline passengers
Exa 9.8.3 Polioin the USA
Exa 9.8.7 Goals Scored by England Against Scotland
Exa 10.1.1 Predicted deaths by ARAR algorithm . .
Exa 10.2.1 Holt Winters non seasonal forecast
Exa 10.3.1 Holt Winters seasonal forecast
Exa 11.4.1 Annual Minimum Water Levels in the Nile

63
63
64
66
66
67
68
71
71
72
73

N =

S O = W

oo

10
11
12

Chapter 1

Introduction

R code Exa 1.1.1 Australian wine sales

Page No. 2
Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip
library (ggplot2)
wine_data <- read.delim("WINE.TSM”, header = FALSE)
colnames (wine_data) [1]<- " Sales”
ggplot (wine_data, aes(x = seq(as.Date(”1980-01-01"),
as.Date(”71991-10-01"), by = "month”), y = Sales)
)+
geom_point () +
geom_line () +

labs(title = ”Monthly Wine Sales (Jan 1980 — Oct
1991)7,
x = "Months”,
y = "Sales”) +

theme_minimal ()

R code Exa 1.1.3 Accidental deaths

N

S U W

© 00

10

12

S UL W N~

N

Page No. 2
Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)
deaths= read.csv(”DEATHS.TSM” , header = FALSE)
colnames (deaths) [1]<- " deaths”
ggplot (deaths, aes(x = seq(as.Date(”1973-01-01"), as
.Date(”71978—-12—-01"), by = "month”), y = deaths))
+
geom_point (shape = 15, size = 1) +
geom_line () +
labs(title = "Deaths (Jan 1973 — Nov 1978)7,

x = "Months”,
y = "Deaths”) +
theme_minimal ()

R code Exa 1.1.4 Signal Detection Problem

Page No. 3

set.seed (123)

t <= 1:200

N <- rnorm (200, mean = 0, sd = 0.5)

X <- cos(t/10)

plot(t, X, type = 717, col = "blue”, xlab = "t”7,
ylab = "X”, main = " Signal plot”,lwd=2)

points(t, N, pch = 16, col = "black”, bg = "black”,
cex = 0.5)

R code Exa 1.1.5 Population of the USA

Page No. 4

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—7.zip

8

ot

© 00 J O

10
11
12
13
14
15

[\

O J O Ut i W

10
11
12
13
14

library (ggplot2)
uspop= read.csv (”USPOP.TSM”)
names (uspop) [names (uspop) == "X39292147] <- 7
population”
start_year=1790
num_repeated=20
interval=10
ggplot (uspop, aes(x=seq_len(num_repeated) * interval
+ start_year, y = population)) +
geom_point () +
geom_line() +
labs(title = ”"Population”,
x = "Years”,
y = "US population”) +
theme _minimal ()

R code Exa 1.1.6 Strikes in USA

Page No. 4
Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—-21657—7.zip
library (ggplot2)
strike <- read.delim(”STRIKES.TSM”, header = FALSE)
colnames (strike) [1] <- 7" Strikes”
start_year=1951
end_year=1980
ggplot(strike, aes(x=seq(start_year,end_year), y =
Strikes)) +
geom_point () +
geom_line () +

labs(title = ” Strikes in US”,
x = "Years”,
y = "Strikes”) +

theme_minimal ()

O T s W N

\)

© 00 J O U = W

10

11
12
13

R code Exa 1.3.3 Random walk

Page no. 7

set.seed (123)

t <- 200

steps <- rnorm(t)

random_walk <- cumsum(steps)

plot(0:t, c(0, random_walk), type = 717, col = ”"blue

7
3

xlab = "Time”, ylab = "Value”, main = " Simple
Random Walk”)
points(0:t, c(0, random_walk), col = "red”, pch = 1)

R code Exa 1.3.4 Regression on population data

Page No. 8

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

uspop= read.delim ("USPOP.TSM”, header = FALSE)

colnames (uspop) [1]1<- "population”

start _year=1790

num_repeated=21

interval=10

uspop$years <- seq_len(num_repeated) * interval+
start_year

fit<-Im(population ~ poly(years,2,raw = TRUE), data
= uspop)

ggplot (uspop, aes(x=years, y=population)) +
geom_point () +
geom_smooth (method = "lm”, formula =y “poly(x,2,

raw=TRUE), se = FALSE) +

10

N =

© 00 J O Ut = W

labs(title = "US Population”,
x = "Years”,
y = ”"Population”) +
theme_minimal ()

R code Exa 1.3.5 Level of Lake Huron

Page No. 9

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

hudson= read.csv("LAKE.TSM”, header = FALSE)

colnames (hudson) [1] <- 7"level”

start_year=1875

end_year=1972

hudson$years <-(seq(start_year,end_year))

fit<-1lm(level “years,data = hudson)

residuals <- resid(fit)

residual _df <- data.frame(years = hudson$years,
residuals = residuals)

par (mfrow=c(1,2))
Figure 1-9

plot (hudson$years, hudson$level, type = 70",
main = " Lake Hudson”, xlab = ”Years”, ylab = 7"
Water levels”, pch = 19)
abline (fit, col = 7 blue”,lw=2)

Figure 1-10
plot (residual _df$years,residual _df$residuals, type =
70”7 ,pch = 19,

xlab = "Years”, ylab = "Residuals”, main = 7"
Residuals plot”)
abline(h = 0, col = 7"blue”, 1w = 2)

print (coef (fit))

11

[\

© 00 g O Ut == W

10

11

12
13

14
15

N O Ut = W

R code Exa 1.3.6 Harmonic regression on accidental deaths

Page No. 11

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

colnames (deaths) [1] <- "deaths”

n <- length(deaths$deaths)

time <- 1:n

f1 <- n / 12

f2 <- n / 6

fit <- 1Im(deaths$deaths ~ sin(2 * pi * time / f1) +
cos(2 * pi * time / f1) +

sin(2 * pi * time / £f2) + cos(2 * pi *
time / £2))
fitted_values <- predict(fit)

plot (time, deaths$deaths, type = "p”, col = "black”,
pch = 15, xlab = "Time”, ylab = ”"Value”,
main = "Harmonic Fit”)
lines(time, fitted_values, col = ”blue”, 1lw =2)

R code Exa 1.4.6 Random noise

Page No. 16
Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—7.zip

library (ggplot2)

set.seed (123)

noise <- rnorm(200, mean = O
df <- data.frame(Index = 1:2
ggplot (df, aes(x = Index, y

, sd = 1)
00, Noise = noise)
= Noise)) +

12

10

11
12
13
14
15

16
17
18
19
20

21
22

N =

© 00 J O U i W

10

11
12

geom_point () +
geom_line () +
labs(x = "Index”, y = "Noise”, title = ”"Simulated
N(0,1) Noise”)+
theme_minimal ()
acf_result <- acf(noise, plot = FALSE)
n <- length(noise)
bounds <- 1.96 / sqrt(mn)
acf_df <- data.frame(Lag = acf_result$lag, ACF = acf
_result$act)
ggplot (acf_df, aes(x = Lag, y = ACF)) +
geom_hline(yintercept = c(-bounds, bounds)) +
geom_hline (yintercept 0) +
geom_segment (aes (xend Lag, yend = 0)) +
labs(x = "Lag”, y = "ACF”, title = " Sample
Autocorrelation Function (ACF)”) +
ylim(-1, 1)+
theme _minimal ()

R code Exa 1.5.1 Moving average of strikes

Page No. 22

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (zoo)

strike<- read.csv(”STRIKES.TSM” , header =FALSE)

colnames (strike) [1] <- 7 Strikes”

start_year=1951

end_year=1980

window_size <- b

strike$Moving Avg <- rollmean(strike$Strikes, k =
window_size, fill = NA)

strike$residuals <- strike$Strikes-strike$Moving_Avg

Figure 1-18

13

w

ggplot)+

geom_line(data=strike, aes(x = seq(start_year,end_
year) ,y=Moving_Avg))+

geom_point (data=strike, aes(x = seq(start_year,end
_year) ,y=strike$Strikes))+

labs(x = "Year”, y = " Strikes”, title = 7 Strikes

Data with Moving Average”)+
theme _minimal ()
Figure 1-19
ggplot (data=strike, aes(x = seq(start_year,end_year)
,y=residuals))+

20
21
22

23

geom_line () +

geom_point ()+

labs(x = ”"Year”, y = 7 Strikes”, title = " Strikes
Data residuals”)+

theme_minimal ()

N

© 00 J O U i W

R code Exa 1.5.2 Smooth exponential and low pass filter

Page No. 24

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

strike<- read.csv(”STRIKES.TSM” , header = FALSE)

colnames (strike) [1] <- 7 Strikes”

Figure 1-21

plot (smooth.exp(ts(strike$Strikes) ,0.4))

lines (smooth.exp(ts(strike$Strikes) ,0.4))

Figure 1-22

plot (smooth.fft(ts(strike$Strikes) ,0.4))

lines (smooth.fft(ts(strike$Strikes) ,0.4))

R code Exa 1.5.3 Differenced series

14

N

© 00 N O U = W

10
11

12
13
14
15
16
17
18

19
20

N

S U W

Page No. 11

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

library (pracma)

library (dplyr)

uspop= read.delim ("USPOP.TSM”, header = FALSE)

colnames (uspop) [1] <- " population”

start_year=1790

num_repeated=21

interval=10

uspop$years <- seq_len(num_repeated) * interval+
start_year

diff2 <- diff(diff (uspop$population))

uspop <- slice(uspop,-(1:2))

uspop$diff2 <- diff2

ggplot (uspop, aes(x = years, y = diff2)) +
geom_point ()+
geom_line () +

labs(title = ”"Second—Order Differences of
Population Data”,
x = "Years”, y = 7"Second—Order Differences”)+

theme_minimal ()

R code Exa 1.5.4 Deseasonalization and seasonal component

Page No. 28

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

library (pracma)

deaths<-read.delim ("DEATHS.TSM” , header =FALSE)

deaths$years<- seq(as.Date(”1973—-01-01"), as.Date(”
1978 —-12—-01"), by = "month”)

period <- 12

15

10
11

12

13

14
15

16
17
18

19
20
21

22
23
24

25

colnames (deaths) [1] <- ”deaths”

decomposition <- decompose(ts(deaths$deaths,
frequency = period))

seasonal _component <- decomposition$seasonal

deseasonalized_data <- deaths$deaths - seasonal_
component

deseasonalized_df <- data.frame(years = deaths$years
, deseasonalized_deaths = deseasonalized_data)

seasonal _component_df <- data.frame(years = deaths$
years, seasonal_component = seasonal_component)

Figure 1-24
ggplot (deseasonalized_df, aes(x = years, y =
deseasonalized_deaths)) +

geom_line(color = "blue”) +

geom_point ()+

labs(x = "Years”, y = "Deseasonalized Deaths”,
title = ”Deseasonalized Deaths”) +

theme_minimal ()
Figure 1-25

ggplot (seasonal _component_df, aes(x = years, y =
seasonal _component)) +
geom_line(color = "red”) +
geom_point ()+
labs(x = "Years”, y = "Seasonal Component”, title

= 7 Seasonal Component”) +
theme_minimal ()

R code Exa 1.5.5 Estimation of seasonal component

Page No. 28

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (dplyr)

deaths= read.delim ("DEATHS.TSM”, header = FALSE)

16

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26

27

colnames (deaths) [1] <- " deaths”
deaths$months=seq(as.Date(”1973-01-01"), as.Date(”
1978 —-12—01") ,by="month ")
diffl <- diff (deaths$deaths, lag
deaths <- slice(deaths,-(1:12))
deaths$diffl <- diff1

12)

Figure 1-26

diff1)) +

ggplot (deaths, aes(x = months, y
geom_point ()+
geom_line () +
labs(title = "First —Order Differences of deaths
Data”,
x = "months”, y = "First —Order Differences”)+
theme_minimal ()

Figure 1-27

diff2 <- diff (deaths$diffl)

deaths <- slice(deaths,-1)

deaths$diff2 <- diff2

ggplot (deaths, aes(x = months, y = diff2)) +
geom_point ()+
geom_line() +

labs(title = ”"Second—Order Differences of deaths
Data”,
x = "months”, y = ”"Second—Order Differences”)
+

theme_minimal ()

R code Exa 1.6.1 ACF on signal data

Page No. 33

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

signal<- read.delim (”SIGNAL.TSM”, header = FALSE)

colnames (signal) [1] <- 7" signals”

acf_values <- acf(signal$signals, plot = FALSE)S$acf

17

6 n <- length(signal$signals)

7 conf_bound <- 1.96 / sqrt(n)

8 plot(acf_values, ylim = c(-conf_bound, conf_bound),

9 main = ”Sample Autocorrelation Function (ACF)”

10 ylab = "ACF”, xlab = "Lag”, type = "h”)

11 abline(h = c(-conf_bound, conf_bound), col = "red”,
1ty = 2)

12 abline(h = 0, 1ty = 2)

18

© 00 J O U i W N

—_ =
)

—_
[\]

13

14

Chapter 2

Stationary Processes

R code Exa 2.4.3 MA1 Process

Page No. 53
n <- 200
set.seed (123)
Z <- rnorm(n)
X <- numeric(n)
X[1] <- Z[1]
for (i in 2:n) {
X[i] <- Z[i] - 0.8 * Z[i-1]
}
acf_values <- acf(X, plot = FALSE)$acft
plot (0:40, acf_values[1:41], type = "h”, ylim = c¢
(-1, 1),
xlab = "Lag”, ylab = "ACF”, main = " Sample
Autocorrelation Function for MA(1)”)
abline(h = c(-1.96/sqrt(n), 1.96/sqrt(n)), col =7
red”, 1ty = 2)
abline(h = 0, col = "blue”, 1ty = 1)

R code Exa 2.4.4 AR1 Process

19

W N =

© 00 O U W~

10
11

12
13
14
15
16
17
18

19
20

21
22
23
24
25
26
27

28

29

30
31

#..

Page No. 54

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

hudson= read.csv ("LAKE.TSM”)

names (hudson) [names (hudson) == "X10.387] <- "level”

start _year=1876

end_year=1972

hudson$years <- seq(start_year,end_year)

fit<-1m(level “years,data = hudson)

residuals <- resid(fit)

residuals_df <- data.frame(years = hudson$years,
residuals = residuals)

n <- nrow(residuals_df)

phi <- 0.791

model _acf <- function(i) {
phi~i

}

confidence_bounds <- function(i) {
1.96 * (n~(-0.5)) * sqrt(((1 - (phi~(2*i))) * (1 +

(phi~2))) / (1 - (phi~2)))

}

acf_values <- acf(residuals_df$residuals, plot =
FALSE) $acf

upper _conf _bounds <- sapply(1:40, function(i) {
confidence_bounds (i) + (phi~i)

b
lower _conf_bounds <- sapply(1:40, function(i) {
(phi~i) - confidence_bounds (i)
1))
plot (0:40, acf_values[1:41], type = "h”, ylim = c
(-1, 1),
xlab = "Lag”, ylab = "ACF”, main = ”Sample
Autocorrelation Function of Residuals (AR(1)
)
lines (1:40, upper_conf_bounds, col = "red”, 1lty = 2)
lines (1:40, lower_conf_bounds, col = "red”, 1lty = 2)

20

© 00 N O O = W N+~

I T
=~ w N = O

Plot the model ACF
points (1:40, sapply(1:40, model_acf), type = "b”,
col = "blue”)

R code Exa 2.5.5 Durbin Levinson and innovations algorithm

Page no. 64

compute_autocovariance <- function(phi) {
gamma_0 <- 1 + phi~2
gamma_1 <- -phi

return(list (gamma_O0 = gamma_O, gamma_1 = gamma_1))
}
innovation_algorithm <- function(gamma) {
theta_11 <- -gamma$gamma_1 / gamma$gamma_0O
return(list (theta_11 = theta_11))
}

durbin_levinson_algorithm <- function(gamma) {
phi_11 <- gamma$gamma_1 / gamma$gamma_0O
sigma_1_squared <- gamma$gamma_O0 * (1 - phi_1172)
return(list(phi_11 = phi_11, sigma_1_squared =

sigma_1_squared))

}

phi <- 0.9

gamma <- compute_autocovariance (phi)

theta <- innovation_algorithm(gamma)

phi_result <- durbin_levinson_algorithm(gamma)

cat (paste0(”theta_11 = 7, theta$theta_11, "\n”))

cat (paste0(”"phi_11 = 7, phi_result$phi_11, ”"\n”))

21

© 00 J O U i W N

—
o

U W N =

Chapter 3
ARMA Models

R code Exa 3.1.1 ARMA 11

Page no.76

ar_params <- c(0.5)

ma_params <- c(0.4)

is_invertible <- function(ma_params) {
roots <- polyroot(c(l, ma_params))
all(abs(roots) > 1)

}

invertibility_status <- is_invertible (ma_params)
invertibility_status

R code Exa 3.1.2 AR2 Process

Page no.76

Coefficients of AR(2) model
phil <- 0.7

phi2 <- -0.1

poly_coefs <- c(1, -phil, -phi2)

22

© 00 J O U i W N =

© 00 J O Ut i W N+~

— —_
— @)

—_
[\)

roots <- polyroot(poly_coefs)
cat ("Roots of the characteristic polynomial (zeros
of the AR(2) process):\n”)

cat (roots, ”"\n”)

R code Exa 3.1.3 ARMA 21

Page no. 77

ar _params <- c(-0.75, 0.5625)

ma_params <- c(1.25)

is_invertible <- function(ma_params) {
roots <- polyroot(c(l, ma_params))
all(abs(roots) > 1)

}

invertibility_status <- is_invertible (ma_params)

invertibility_status

R code Exa 3.2.4 General AR2 process

Page No. 80

Figure 3-1
library(stats)

xil <- 2

xi2 <- 5

phil <- 1/xil + 1/xi2

phi2 <- -(1/xi1) * (1/xi2)
set.seed (123)

n <- 1000

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar _process, main = ”Sample ACF of AR(2) Process”
)

Figure 3-2

23

13
14
15
16
17

18

19
20
21
22
23
24

25

26
27
28
29
30
31
32

33

\)

xil <- 10/9

Xxi2 <- 2

phil <- 1/xil + 1/xi?2

phi2 <- -(1/xil1) * (1/xi2)

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar_process, main = ”"Sample ACF of AR(2) Process”
)

Figure 3-3

xi1 <- -10/9

xi2 <- 2

phil <- 1/xil + 1/%i?2

phi2 <- -(1/xi1) * (1/xi2)

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar_process, main = ”"Sample ACF of AR(2) Process”
)

Figure 3—4

xil <- complex(real 2/3, imaginary = 2*sqrt(3)/3)
xi2 <- complex(real = 2/3, imaginary = -2*sqrt(3)/3)
phil <- Re(1/xil + 1/xi2)

phi2 <- Re(-(1/xil1) * (1/xi2))

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar _process, main = ”Sample ACF of AR(2) Process”
)

R code Exa 3.2.8 Overshorts series

Page No. 84

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

oshorts<- read.csv(”OSHORTS.TSM”, header =FALSE)

colnames (oshorts) [1] <- "overshorts”

24

10
11
12
13

14
15
16

17
18

© 00 J O U = W

10

11
12
13

oshorts$days <- seq(l,nrow(oshorts))
Figure 3-5

plot (oshorts$days,oshorts$overshorts, xlab = ”Days”,
ylab = " Overshorts”,
type = 'o’, col = "blue”)
abline (h=0)

Figure 3—6

acf_result <- acf(oshorts$overshorts, plot

n <- length(oshorts)

bounds <- 1.96 * ((1 + 2 *x acf_result$acf[2]72)"(1/
2)) / sqrt(n)

plot (acf_result, main = ”"Sample ACF with Bounds”)

print (mean (oshorts$overshorts))

acvf<-acf (oshorts$overshorts, plot= FALSE, type =
covariance ')

print (acvf$acf [1])

print (acvf$act [2])

FALSE)

J

R code Exa 3.2.9 The sunspot numbers

Page No. 86

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (ggplot2)

spots<- read.csv(”SUNSPOTS.TSM” ,header = FALSE)

colnames (spots) [1] <- "sunspots”

pacf _result <- pacf(spots, plot = FALSE)

bounds <- 1.96 / sqrt(100)

plot (pacf_result, main = ”"Sample PACF”)

print (pacf_result)

acvf<-acf (spots$sunspots, plot= FALSE, type =
covariance ')

print (acvf$acf [1])

print (acvf$act [2])

print Cacvf$act [3])

Y

25

0 3 O O = W N

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24

25
26
27
28

R code Exa 3.3.4 Numerical prediction of ARMA 2 3

Page no. 90

Answer may vary due to randomization in simulation
library (forecast)

ar _params <- c(1,-0.24)

ma_params <- c(0.4, 0.2, 0.1)

set.seed (46)

n <- 10
arma_process <- arima.sim(model = list(ar = ar_
params, ma = ma_params), n = n)

print (arma_process)
acf _values <- acf(arma_process, type="covariance”,
plot=FALSE)$acf
gamma_0 <- acf_values[1]
gamma_1 <- acf_values [2]
gamma _2 <- acf_values [3]
cat ("gamma_0 =", gamma_0, ”\n”)
cat ("gamma_1 =", gamma_1, ”\n”)
cat ("gamma_2 =", gamma_2, ”\n”)
innovations_algorithm <- function(arma_process, n
steps) {
n <- length(arma_process)
predictions <- numeric(n_steps)
e <- numeric(n + n_steps)
phi <- numeric(n + n_steps)
theta <- numeric(n + n_steps)
for (i in 1:n_steps) {
predictions [i] <- sum(ar_params * arma_process [(
n-i+1) : (n-i+2)1])
+ sum(ma_params * e[(n-i+1):(n-i+3)])
e[n+i] <- arma_process[i] - predictions([i]

}

return(predictions)

26

29
30

31

N =

© 00 J O Ut i W

10
11
12

3

predictions <- innovations_algorithm(arma_process,
10)
print (predictions)

R code Exa 3.3.5 h step prediction of ARMA

Page no. 91

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)

ar _params <- c(1,-0.24)

ma_params <- c(0.4, 0.2, 0.1)

E334 <- read.delim(”E334.TSM”, header = FALSE)

colnames (E334) [1] <- "E”

Ets <- ts(E334$E)

arma_model <- Arima(Ets, order=c(2, 0, 3))

forecasts <- forecast(arma_model, h=10)

cat ("\nForecasted values for the next 10 steps:\n”)

print (forecasts$fitted)

27

© 00 J O U i W N

I I e O T e T e T e T e e T o T Y
_ O © 00 J O UL i W NN+ O

Chapter 4

Spectral Analysis

R code Exa 4.1.2 Linear combination of sinusoids

Page no. 101
Answer may vary due to randomization
library (ggplot2)
k <= 2
omega <- seq(pi/4, pi/6, length.out = k)
sigma2 <- 9
t <- 1:100
set.seed (123)
A <- rnorm(k, mean 0, sd sqrt (sigma?2))
B <- rnorm(k, mean = 0, sd sqrt (sigma?2))
X_t <- sapply(t, function(ti) {
sum (A * cos(omega * ti) + B * sin(omega * ti))
1))
df <- data.frame(Time = t, Value = X_t)
ggplot (df , aes(x = Time, y = Value)) +
geom_line () +
geom_point () +
ggtitle (" Sample Path”) +
xlab (" Time”) +
ylab ("X(t)”) +
theme _minimal ()

28

© 00 J O U i W N+~

—
]

F_lambda <- function(lambda, omega, sigma2) {

sapply (lambda, function(l) {
sum(sigma2 * (0.5 * (1 >= -omega & 1 < omega) +
1.0 * (1 >= omega)))

1)

}

lambda <- seq(-pi, pi, length.out = 1000)

F_values <- F_lambda(lambda, omega, sigma2)

df _F <- data.frame(Lambda = lambda, F_Lambda = F_
values)

ggplot(df _F, aes(x = Lambda, y = F_Lambda)) +
geom_step () +
ggtitle (" Spectral Distribution Function F()7) +
xlab(” 7)) +
ylab("F()”") +
theme_minimal ()

R code Exa 4.1.4 Spectral density of AR 1

Page no. 103

library (ggplot2)

library(stats)

set.seed (123)

n <- 1000

Figure 4-3

phi <- 0.7

sigma2 <- 1

density <- function(lambda, phi, sigma2) {
1/ (2 % pi) * sigma2 / (1 + phi~"2 - 2 % phi * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, phi, sigma2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

29

15 ggplot (df _spectral, aes(x = Lambda, y =
SpectralDensity)) +

16 geom_line () +

17 ggtitle (" Spectral Density”) +

18 xlab(” 7)) +
19 ylab(” Spectral Density”) +
20 theme_minimal ()

21 # Figure 4-—-4

22 phi <- -0.7

23 sigma2 <- 1

24 density <- function(lambda, phi, sigma2) {

25 1/ (2 % pi) * sigma2 / (1 + phi~"2 - 2 % phi * cos

(lambda))

26 %}

27 lambda <- seq(0, pi, length.out = 1000)

28 values <- density(lambda, phi, sigma2)

29 df_spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

30 ggplot(df_spectral, aes(x = Lambda, y =
SpectralDensity)) +

31 geom_line () +

32 ggtitle(” Spectral Density”) +

33 xlab(” 7)) +
34 ylab(” Spectral Density”) +
35 theme _minimal ()

36 # Figure 4-5

37 phi <- 0.7

38 ar_process <- arima.sim(model = list(ar = c(phi)), n
= n)

39 acf (ar_process, main = "ACF of AR(1) Process”)

40 # Figure 4—6

41 phi <- -0.7

42 ar_process <- arima.sim(model = list(ar = c(phi)), n
= n)

43 acf (ar_process, main = "ACF of AR(1) Process”)

30

S U W N~

© 00

R code Exa 4.1.5 Spectral density of MA 1

Page no. 105

library (ggplot2)

theta <- 0.9

sigma2 <- 1

density <- function(lambda, theta, sigma2) {

sigma2 / (2 * pi) * (1 + theta"2 + 2 * theta * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, theta, sigma?2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

Figure 4-7

ggplot (df _spectral, aes(x = Lambda, y =
SpectralDensity)) +
geom_line() +
ggtitle (” Spectral Density of MA(1) Process”) +
xlab(expression(lambda)) +
ylab(expression (f(lambda))) +
theme_minimal ()

Figure 4-8

theta <- -0.9

sigma2 <- 1

density <- function(lambda, theta, sigma2) {
sigma2 / (2 * pi) * (1 + theta”2 + 2 * theta * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, theta, sigma2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

ggplot (df _spectral, aes(x = Lambda, y =

31

28
29
30
31
32

N

© 00 J O O = W

10
11
12
13
14

15
16
17

18
19

20
21

SpectralDensity)) +

geom_line () +

ggtitle (” Spectral Density of MA(1) Process”) +
xlab(expression(lambda)) +

ylab (expression(f(lambda))) +

theme_minimal ()

R code Exa 4.2.2 Sunspot numbers spectral density

Page No. 110

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library (ggplot2)

library (TSA)

library(stats)

library (itsmr)

spots= read.csv (”SUNSPOTS.TSM”, header =FALSE)

colnames (spots) [1]<- "sunspots”
periodogram <- spec.pgram(spots, log = "no”, plot =
FALSE)

freq <- periodogram$freq

spec <- periodogram$spec

weights <- rep(1/3, 3)

freq <- freq * (2 * pi)

smoothed _spec <- stats::filter(spec, filter=weights,

sides=2)

Figure 4-9

p <- periodogram(ts(spots$sunspots), q = 1, opt = 0)

plot (p$freq, (p$spec)/(2*pi), type = "o—", pch=19,
xlab = "frequency”, ylab = ”"spectral density”)

Figure 4-—-10

df <- data.frame(freq = freq, smoothed_spec =
smoothed _spec)

ggplot (df, aes(x = freq, y = smoothed_spec)) +
geom_line () +

32

N O U R W NN =

scale_x_continuous(limits = c(0, pi)) +
labs (

x = expression(lambda),

y = expression (hat(f) (lambda)),

title = ”Spectral Density Estimate”
) 4+

theme _minimal ()

Figure 4-11

weights <- c(1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/
15)

smoothed _spec <- stats::filter(spec, filter=weights,

sides=2)

df <- data.frame(freq = freq, smoothed_spec =
smoothed _spec)

ggplot(df, aes(x = freq, y = smoothed_spec)) +
geom_line() +

scale_x_continuous(limits = c(0, pi)) +
labs(

x = expression(lambda),

y = expression (hat(f) (lambda)),

title = ”Spectral Density Estimate”
) 4+

theme_minimal ()

R code Exa 4.4.1 Spectral density of AR 2

Page 112
library (ggplot2)
D_q <- function(lambda, q) {
if (lambda == 0) A
return (1)
} else {
return(sin((q + 0.5) * lambda) / ((2 * g + 1) =*
sin(lambda / 2)))

33

9 %

10 g <- 10

11 lambda <- seq(0, pi, length.out = 1000)

12 D_10 <- sapply(lambda, D_q, q = q)

13 df <- data.frame(lambda = lambda, D_10 = D_10)
14 ggplot(df, aes(x = lambda, y = D_10)) +

15 geom_line () +

16 labs(

17 X = expression(lambda),

18 y = expression(D[10] (lambda)),

19 title = ”"Transfer Function D[10](lambda) for
Simple Moving—Average Filter”

20)+

21 theme_minimal ()

22 # Figure 4-—13

23 ideal _low_pass <- function(lambda, wc) {
24 ifelse(abs(lambda) <= wc, 1, 0)

25 }

26 wc <- pi / 4

27 q_values <- c(2, 10)

28 ideal _values <- ideal_low_pass (lambda, wc)
29 D_2_values <- sapply(lambda, D_q, q = 2)
30 D_10_values <- sapply(lambda, D_q, g = 10)
31 df <- data.frame(

32 lambda = rep(lambda, 3),

33 value = c(ideal_values, D_2_values, D_10_values),

34 type = factor(rep(c(”Ideal”, 7q = 27, "q = 107),
each = length(lambda)))

35)

36 ggplot(df, aes(x = lambda, y = value, color = type))

+

37 geom_line() +

38 labs(

39 X = expression(lambda),

40 y = "Transfer Function”,

41 title = ”"Transfer Functions: Ideal Low—Pass

Filter and Truncated Fourier Approximations”
42)+

34

43 scale_color_manual (values = c(”Ideal” = ”"black”, ”

q — 277 = 77b1ue77, 77q — 1077 - 77red77)) +
44 theme _minimal () +
45 theme (legend.title = element_blank())

35

\)

© 00 N O U = W

10
11
12
13

14

Chapter 5

Modeling and Forecasting with
ARMA Processes

R code Exa 5.1.1 The Dow Jones Utilities Index

Page No. 126

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (forecast)

library(tseries)

dow<- read.csv(”"DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- " jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff(dowjones, lag = 1)

ar_model <- ar(dowjones_diff, order.max = 1, method
= "yule—walker”)

sample_autocovariance <- acf(dowjones_diff, plot =
FALSE, type = ’'covariance ')

ar_coefficient <- ar_model$ar

par (mfrow = c(1, 2))

acf (dowjones_diff, main = "ACF of Differenced Series
77)

pacf (dowjones_diff, main = "PACF of Differenced
Series”)

36

15
16

0 N O T = W N~

10
11
12
13

14
15
16
17

print (sample_autocovariance)
print (ar_coefficient)

R code Exa 5.1.2 MA 1 model forecasting

Page No. 128

library (forecast)

library(tseries)

oshorts<- read.csv(?”OSHORTS.TSM”, header = FALSE)

colnames (oshorts) [1]1<- "overshorts”

ots <- ts(oshorts$overshorts)

rho_1 <- acf(ots, plot=FALSE)$acf [2]

gamma <- acf(ots, plot = FALSE, type = ’covariance’)
$acf [1]

if (abs(rho_1) > 0.5) {
theta_hat <- rho_1/abs(rho_1)
} else {
theta_hat <- (rho_1) * sqrt(4 * rho_1"2 - 4 * rho_
1) / (2 * abs(rho_1))

}

sigma2_hat <- gamma / (1 + theta_hat~2)

cat (" Estimated theta_hat:”, theta_hat, ”\n”)
cat (" Estimated sigma2_hat:”, sigma2_hat, "\n”)

R code Exa 5.1.3 Dow jones utilities index using burg model

Page No. 131

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library(tseries)

library (itsmr)

dow<- read.csv(”"DOWJ.TSM” , header = FALSE)

37

© o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

© 00 N O U = W

10
11
12
13

colnames (dow) [1] <- "jones”
time_series <- ts(dow$jones)

Y_t <- diff(time_series, lag=1)
ar_order <- 1

burg_model <- burg(Y_t, ar_order)
ar_param <- burg_model$phi
stderror <- (burg_model$se.phi)
aicc <- burg_model$aicc

cat ("AR(1) model parameter:”, ar_param, ”\n”)

cat ("AICC:”, aicc, "\n”)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)

}
confs <- find_conf (ar_param,stderror)
cat ("95% Confidence Bounds: ”,confs)

R code Exa 5.1.4 Modeling on Lake data

Page No. 131

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library(tseries)
library (itsmr)

huron<- read.csv("LAKE.TSM” , header=FALSE)

colnames (huron) [1] <- ’water’

time_series <- ts(huron$water)
Y _ t <- time_series

X_t <- Y_t - 9.0041

par (mfrow = c(1, 2))

Figure 5-—3

acf(X_t, main = 7ACF”)

Figure 5—4

38

14 pacf(X_t, main = "PACF”)

15 ar_order <-2

16

17 # Burg model

18 burg_model <- burg(X_t, ar_order)

19 arb_param <- burg_model$phi

20 stderr <- (burg_model$se.phi)

21 aicc <- burg_model$aicc

22 conf_lower <- arb_param - (stderr*1.96)

23 conf_upper <- arb_param + (stderr*1.96)

24 print(” For burg model: 7)

25 cat(”AR(1) model parameter:”, arb_param, "\n”)

26 cat ("AICC:”, aicc, 7\n”)

27 cat (”795% Confidence Bounds: (7, conf_lower, 7, 7,
conf _upper, ”)\n")

28

29 # Yule walker model

30 yw_model <- yw(X_t, ar_order)

31 ary_param <- yw_model$phi

32 stderr <- (yw_model$se.phi)

33 aicc <- yw_model$aicc

34 conf_lower <- ary_param - (stderrx*1.96)

35 conf_upper <- ary_param + (stderrx*1.96)

36 print(” For yule walker model: 7)

37 cat("AR(1) model parameter:”, ary_param, ”\n”)

38 cat (7AICC:”, aicc, "\n”)

39 cat(”95% Confidence Bounds: (7, conf_lower, 7,6 7,
conf _upper, 7)\n”)

R code Exa 5.1.5 Estimations on Dow jones utilities index

1 # Page No. 134

2 # Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

3 library(tseries)

39

© 00 N O U

10
11
12
13
14
15
16
17
18
19

20
21

© 00 J O U i W N

—_ =
w NN = O

library (itsmr)

dow<- read.csv("DOWJ.TSM” , header

colnames (dow) [1] <- "jones”

time_series <- ts(dow$jones)

Y t <- diff(time_series, lag=1)

ma_order <- 2

inno_model <- ia(Y_t, ma_order, m = 17)

ma_param <- inno_model$theta

stderr <- (inno_model$se.theta)

aicc <- inno_model$aicc

stddev_1 <- ma_param[1]/(1.96*stderr [1])

stddev_2 <- ma_param[2]/(1.96*stderr [2])

wnvar <- inno_model$sigma?2

cat ("MA(2) model parameter:”, ma_param, ”\n”)

cat ("AICC:”, aicc, "\n”)

print (” Standard deviations for first two MA
parameters:”)

print (stddev_1) ;print (stddev_2)

cat (" White noise variance: 7, wnvar)

FALSE)

R code Exa 5.1.6 Estimations on Lake data

Page No. 137

library (itsmr)

library(tseries)

huron<- read.csv(”LAKE.TSM” , header = FALSE)
colnames (huron) [1] <- ’water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

arma_model <- arma(X_t, p=1, qg=1)
ma_param <- arma_model$theta
ar_param <- arma_model$phi

stderr _phi <- arma_model$se.phi
stderr_theta <- arma_model$se.theta
aicc <- arma_model$aicc

40

14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

© 00 J O U = W

10
11
12
13
14

stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)

cat (" Estimated AR coefficient: 7, ar_param, "\n”)
cat (" Estimated MA coefficient: 7, ma_param, ”\n”)
cat ("AICC: 7, aicc, "\n”)

cat (” Standard deviations: 7, stddev_phi, 7 7,

stddev_theta)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)

}
conf_phi <- find_conf (ar_param, stderr_phi)
cat ("95% Confidence Bounds for phi: 7, conf_phi)

conf_theta <- find_conf(ma_param, stderr_theta)

cat ("95% Confidence Bounds for theta: ”, conf_theta)

R code Exa 5.1.7 Lake data analysis using Hannan algorithm

Page No. 138

Downloading link: https://storage.googleapis.com/

springer —extras/zip/2002/978—0—-387—21657—7.zip
library (itsmr)
library(tseries)
huron<- read.csv(”LAKE.TSM” , header = FALSE)
colnames (huron) [1] <- ’water’
time_series <- ts(huron$water)
Y_t <- time_series
X_t <= Y_t - mean(Y_t)
p <- 1
q <- 1
h_model <- hannan(X_t, p, q)
ar_param <- h_model$phi
ma_param <- h_model$theta

41

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

N =

© 00 J O Ut = W

10
11

aicc <- h_model$aicc

stderr _phi <- h_model$se.phi

stderr_theta <- h_model$se.theta

stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)

cat ("Estimated AR coefficient: 7, ar_param, ”"\n”)
cat ("Estimated MA coefficient: 7, ma_param, ”"\n”)
cat ("AICC: 7, aicc, 7\n”)
cat (7 Standard deviations , phi and theta
respectively: 7, stddev_phi, stddev_theta)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)

high <- param + (stderr*1.96)
x <- c(low, high)
return (x)
}
confs_phi <- find_conf (ar_param,stderr_phi)
cat ("95% Confidence Bounds for phi: ”,confs_phi)
confs_theta <- find_conf(ma_param,stderr_theta)
cat ("95% Confidence Bounds for theta: ”,confs_theta)

R code Exa 5.2.4 Burg and yule walker model comparison

Page No. 143

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (itsmr)

library(tseries)

dow<- read.csv("DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- "jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff (dowjones, lag = 1)

dow_mean_diff <- dowjones_diff - mean(dowjones_diff)

p <- 1; g <- 0; n <- length(dow_mean_diff)

ywmodel <- yw(dow_mean_diff, p)

42

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bmodel <- burg(dow_mean_diff, p)
model <- autofit(dow_mean_diff, p=0:5, gq=0:5)
aicc <- model$aicc
aicc_yw <- ywmodel$aicc
aicc_b <- bmodel$aicc
LL_yw <- aicc_yw - (2*(p+q+1)*n/(n-p-q-2))
LL_b <- aicc_b - (2*(p+qg+1l)*n/(n-p-q-2))
LL <- aicc - (2*x(p+g+1)*n/(n-p-q-2))
b_param <- bmodel$phi
stderr <- model$se.phi
ar _param <- model$phi
find_conf <- function(param, stderr)({

low <- param - (stderr*1.96)

high <- param + (stderr*1.96)

x <- c(low, high)

return (x)
}

confs <- find_conf (ar_param,stderr)

cat (”Minimum AICC:” ,aicc,”\n”)

cat (” Standard error:”,stderr,”\n”)

cat ("95% Confidence Bounds: 7 ,confs)

cat ("Log likelihood for autofit:”,LL,”\n”)
cat (" Parameters in burg model:” ,b_param,”\n”)

cat ("Log likelihood for yule walker:” ,LL_yw,”\n”)
cat ("Log likelihood for burg:”,LL_b,”\n”)

R code Exa 5.2.5 Autofit on Lake data

Page No. 144

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library(tseries)

hudson <- read.csv(?”LAKE.TSM”, header = FALSE)

43

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

N =

-~ W

colnames (hudson) [1]<- 7level”
Y_t <- ts(hudson$level)
X_t <= Y_t - mean(Y_t)
arma_model <- autofit(X_t, p=0:5, gq=0:5)
aicc <- arma_model$aicc
ar_param <- arma_model$phi
ma_param <- arma_model$theta
stderr_phi <- arma_model$se.phi
stderr_theta <- arma_model$se.theta
stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)
find_conf <- function(param, stderr)({
low <- param - (stderr*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)
}
confs_phi <- find_conf (ar_param,stderr_phi)
confs_theta <- find_conf(ma_param,stderr_theta)
cat ("AICC:” ,aicc,”\n")
cat ("AR Parameter:” ,ar_param,”\n”)
cat ("MA Parameter” ,ma_param,”\n”)
cat (" Standard deviations for phi and theta:”,stddev_
phi,stddev_theta,”\n”)
print (795% Confidence intervals:”)
cat (" for phi:”,confs_phi,”\n”)
cat ("for theta:”,confs_theta,”\n”)

R code Exa 5.4.1 Forecasts on overshorts data

Page No. 147

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

Answer may vary due to randomization

library(tseries)

44

© 00 J & Ot

10
11
12
13
14
15
16
17
18
19

[\

© 00 J O U == W

10
11
12
13
14
15

library (forecast)

oshorts<- read.csv(”OSHORTS.TSM” ,header = FALSE)

colnames (oshorts) [1]<- "overshorts”

Xts <- ts(oshorts$overshorts)

best_model <- auto.arima(Xts,max.order = 1, stepwise
= FALSE, approximation = FALSE)

best_model$coef

ma_model <- arima(Xts, order = c(0, 0, 1))

predictions <- predict(ma_model,7)

mean_Xts <- mean(Xts)

predicted_values <- as.numeric(predictions$pred)

mse <- sqrt(mean((Xts - mean_Xts)~ 2))

cat (" Predicted Values:\n”)

print (predicted_values)

cat ("Mean Squared Error (MSE):\n”)

print (mse)

R code Exa 5.5.1 FPE based selection of an AR model for Lake data

Page No. 150
Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—-21657—7.zip
library(tseries)
library (itsmr)
huron<- read.csv(’LAKE.TSM”, header = FALSE)
colnames (huron) [1] <- ’water’
Y_t <- ts(huron$water)
X_t <= Y_t - mean(Y_t)
ar _orders <- 1:10
fpe_values <- numeric(length(ar_orders))
sigma_squared_values <- numeric(length(ar_orders))
for (p in ar_orders) {
ar _model <- arma(X_t, p=p, q=0)
n <- length(X_t)
sigma_squared <- ar_model$sigma?2

45

16
17
18
19
20

21

N

© 00 N O U = W

10
11
12
13
14
15
16

fpe_values[p] <- (n + p) / (n - p) * sigma_squared
sigma_squared_values[p] <- sigma_squared
}
for (p in ar_orders) {
cat ("Order”, p, "— FPE:”, fpe_values[p], "Sigma 2:
7, sigma_squared_values[p], "\n”)

R code Exa 5.5.2 AICC based model selection

Page No. 153

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library(forecast)

library(tseries)

huron<- read.csv("LAKE.TSM” , header=FALSE)

colnames (huron) [1] <- ’"water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

p <-1,; q <-1

best_model2 <- arma(X_t, p=p, 9=9)

cat (" Best ARIMA model based on AICC:\n”)

print (best_model2$aicc)

p <- 2; qg <- 0

best_modell <- arma(X_t, p=p, q=9)

cat (" Best ARIMA model based on AICC:\n”)

print (best_modell$aicc)

46

Chapter 6

Nonstationary and Seasonal
time series models

R code Exa 6.1.1 ARIMA 11 0 Process

Page No. 159

Answer may vary due to randomization

library (forecast)

library (ggplot2)

phi <- 0.8

sigma2 <- 1

n <- 200

set.seed (123)

Xt <- arima.sim(model = list(order = c(1,1,0), ar
phi), n = n, sd = sqrt(sigma2))

10 # Figure 6-—1

11 autoplot (Xt) +

12 ggtitle ("TARIMA(1,1,0)”7) +

13 geom_point ()+

14 xlab (" Time”) +

15 ylab ("Xt”) +

16 theme _minimal ()

17 # Figure 6-—2

18 acf_plot <- ggAcf(Xt) +

© 00 N O U b W N

47

19
20
21
22
23
24
25
26

N

© 00 J O U = W

10
11
12
13
14
15
16
17
18
19
20
21
22

ggtitle (” Sample ACF”) +
theme_minimal ()

print (acf_plot)

Figure 6-3

pacf (Xt, main ="Sample PACEF”)

Figure 6—4

Yt <- diff (Xt)

plot (Yt)

R code Exa 6.2.1 Burg model on Australian wine data

Page no. 168

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

Answer may vary due to specific software features

library (forecast)

library(tseries)

library (itsmr)

wine_data <- read.csv(”WINE.TSM”, header = FALSE)

colnames (wine_data) [1] <- ’Sales’

winedata <- ts(wine_data$Sales)

M <- c¢(”season”,12, 7trend” ,1)

newwine <- Resid(winedata ,M)

plot (newwine, type='1")

M <- c("log”,”diff”,12)

newwine <- Resid(winedata ,M)

plot (newwine, type='1")

acf (newwine)

pacf (newwine)

Wts <- newwine-mean(newwine)

burg_model <- burg(Wts, p=12)

print (burg_model)

arma_model <- autofit(Wts, p=0:15, g=0)

print (arma_model)

48

© 00 J O U i W N

—_ = =
N = O

© 00 N O U = W N

—
o

11
12
13
14

R code Exa 6.2.2 Autofit for minimum AICC model

Page No. 169

library(tseries)

library (itsmr)

huron<- read.csv("LAKE.TSM”, header=FALSE)
colnames (huron) [1] <- ’'water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

model <- autofit(X_t,p=0:2,9=0:2)
cat ("Phi:\n”, model$phi)

cat (" Theta:\n”, model$theta)

cat (" Variance:\n”, model$sigma2)
cat ("AICC:\n”, model$aicc)

R code Exa 6.3.1 Test statistic on simulated data

Page no. 171

Answer may vary due to randomization
library (forecast)

library(tseries)

phi <- 0.8

sigma2 <- 1

n <- 200

set.seed (123)

X0 <- 0

Xt <- arima.sim(model = list(order = c(1,1,0),

phi), n = n, sd = sigma2)
Xt <- c (X0, Xt)
dXt <- diff (Xt)
Xt_lagl <- lag(Xt, 1)
dXt _lagl <- lag(dXt, 1)

49

ar

15
16
17
18
19
20
21
22
23

24

25

26
27

© 00 J O U = W

10
11

dXt _lag2 <- lag(dXt, 2)

valid_indices <- 4:200

reg_data <- data.frame(
dXt = dXt[valid_indices - 1],
Xt_lagl = Xt[valid_indices - 1],
dXt_lagl = dXt[valid_indices - 2],
dXt_lag2 = dXt[valid_indices - 3]

)

reg_model <- 1Im(dXt ~ Xt_lagl + dXt_lagl + dXt_lag2,

data = reg_data)

coeff_ Xt_lagl <- summary(reg_model)$coefficients ["Xt
_lagl”, ”Estimate”]

se_Xt_lagl <- summary(reg_model)$coefficients[”"Xt_
lagl”, 7Std. Error”]

test_statistic <- coeff_Xt_lagl / se_Xt_lagl

cat ("Test statistic for unit root:”, test_statistic,

7 \n77)

R code Exa 6.3.2 Model parameters for overshorts data

Page No. 173

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library(tseries)

library (forecast)

oshorts= read.csv("OSHORTS.TSM” , header = FALSE)

colnames (oshorts) [1] <- ’overshorts’

Xts <- ts(oshorts$overshorts)

Y_t <- Xts + 4.035

best_model <- auto.arima(Y_t, stepwise = FALSE,
approximation = FALSE)

print (best_model$coef)

print ((-2)*logLik (best_model))

50

[\

© 00 J O Ut == W

© 00 J O U i W N

—
)

R code Exa 6.4.1 ARIMA 1 1 0 model on Dow jones utilities index

Page No. 176

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library(tseries)

dow<- read.csv("DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- "jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff(dowjones, lag = 1)

M= c(7dift”, 1)

dowj <- Resid(dowjones ,M)

dowj <- dowj - mean(dowj)

p <-1; g <= 0;

bmodel <- burg(dowj, p)

cat ("Mean squared error” ,bmodel$sigma?2)

print (bmodel)

R code Exa 6.5.2 ACF of seasonal MA model

Page no. 178

Answer may vary due to randomization
library (forecast)

set.seed (123)

n <- 500
U_t <- rnorm(n)
lag <- 12

X_t <- U_t

X_t[(lag + 1):n] <- U_t[(lag + 1):n] - 0.4 * U_t[1:(
n - lag)]

acf(X_t, main="ACF”)

51

© 00 N O O = W N+~

—_ = =
N = O

N

© 00 J O U = W

10
11
12

R code Exa 6.5.3 ACF of seasonal AR model

Page no. 179
Answer may vary due to randomization
library (forecast)
set.seed (123)
n <- 500
U_t <- rnorm(n)
X_t <- numeric(n)
X_t[1:12] <- U_t[1:12]
for (t in (12 + 1):n) {
X_t[t] <= U_t[t] + 0.7 * X_t[t - 12]
}
acf(X_t, main="ACEF”)

R code Exa 6.5.4 ACF of monthly accidental deaths data

Page no. 180

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—-21657—7.zip

Answer may vary due to specific software features.

library (forecast)

library (astsa)

library (itsmr)

deaths= read.csv("DEATHS.TSM” , header = FALSE)

colnames (deaths) [1] <- "deaths”

deaths$months=seq(as.Date(”71973-01-01"), as.Date(”
1978 -12—-01") ,by="month ")

diffl <- diff(deaths$deaths, lag = 12)

Yt <- ts(diff(diffl),frequency = 12)

Figure 6-17

52

13
14

15
16

17
18

© 00 J O U i W N

10
11
12

acf (Yt, main="ACF”)

best_model <- auto.arima(Yt, seasonal=TRUE, stepwise
= FALSE, approximation = FALSE)

print (best _model)

sarima_model <- Arima(Yt, order = c(0, 1, 1),
seasonal = c(0, 1, 1))

model _params <- sarima_model$coef

print (model _params)

R code Exa 6.5.5 Forecasting monthly accidental deaths

Page no. 180

Answer may vary due to specific software features.

library (forecast)

library (itsmr)

deaths= read.csv("DEATHS.TSM” , header = FALSE)

dts <- ts(deaths,frequency = 12)

dts_diff_12 <- diff(dts, lag = 12)

dts_diff_12_1 <- diff(dts_diff_12, lag = 1)

dts_mean_corrected <- dts_diff_12_1 - mean(dts_diff _
12_1)

fit <- arma(dts_mean_corrected,p=0,q=13)

M <= c(7"diff”,12,7diff” ,1)

forecast_values <- forecast(dts,M,fit,h = 6)

R code Exa 6.6.1 GLS based Model parameter estimation

Page no. 187

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library (nlme)
oshorts= read.csv("OSHORTS.TSM”, header = FALSE)

53

© o g O

10

11
12
13
14

15
16
17
18

© 00 N O U = W N

T e T e T o S = S S SRt
N O U xR W NN = O

colnames (oshorts) [1] <- "overshorts”

oshorts$time <- seq(l,length(oshorts$overshorts))

ots <- ts(oshorts$overshorts)

ots <- ots-mean(ots)

oshorts$overshorts <- oshorts$overshorts-mean/(
oshorts$overshorts)

a <- autofit(ots, p=0, g=1)

print (a$theta)

cat ("OLS beta:” ,mean(oshorts$overshorts))

acv <- acf(oshorts$overshorts,type = ’'covariance
plot=FALSE)

cat (" Estimator for beta: "7 ,acv$acf[1]/length(ots))

model _formula <- overshorts ~ time

gls_model <- gls(model_formula, data = oshorts)

summary (gls_model)

R code Exa 6.6.2 Model parameters estimation for Lake data

Page no. 189

library (forecast)

library (nlme)

hudson<- read.csv("LAKE.TSM”, header = FALSE)
colnames (hudson) [1] <- ’level’

hudson$t <- seq(l, length(hudson$level))
ols_model <- 1Im(hudson$level ~ hudson$t)
ols_residuals <- residuals(ols_model)
betal_hat <- coef(ols_model) [1]

cat ("OLS estimate of betal:”, betal_hat, ”\n”)
ar2_model <- Arima(ols_residuals, order=c(2,0,0))
phil_hat <- coef(ar2_model) ["arl”]

phi2_hat <- coef(ar2_model) ["ar2”]

sigma2_hat <- ar2_model$sigma?

cat ("phil:” ,phil_hat)

cat (" phi2:” ,phi2_hat)

cat ("std. dev.:”,sigma2_hat)

o4

18

N

© 00 N O U = W

10

11
12
13
14

15
16
17
18

19
20
21
22
23
24
25
26

glsEstimate () <- gls(lm(level”t),data = hudson)

R code Exa 6.6.3 Seat belt legislation

Page no. 189

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (itsmr)

library (nlme)

library (ggplot2)

seat<- read.csv(”SBL.TSM”, header = FALSE)

gt <- read.csv(”SBLDIN.TSM”, header = FALSE)

colnames (gt) [1] <- Y’

colnames (seat) [1] <- "acc”

seat$Years <- seq(as.Date(”1975-01-01"), as.Date(”
1984—-12—-01"), by = "month”)

ggplot(seat, aes(x = Years, y = acc)) +

geom_point (shape = 15, size = 1) +

geom_line () +

labs(title = "Road injuries (Jan 1975 — Dec 1984)”
x = ”"Months”,
y = "Injuries”) +

theme_minimal ()

Prediction may differ due to specific software
methods

Yt <- ts(seat$acc)

Xt <- Yt-diff(Yt,lag = 12)

data <- data.frame(X = Xt,Y = gt)

gls_model <- gls(X"Y, data = data)

fitted_values <- fitted(gls_model)

seat <-seat[-c(1:12), 1]

seat$fit <- fitted_values

plot (seat$Years,seat$acc, main = " Original Data and
Fitted GLS Line”,

95

27 xlab = "Time”, ylab = "Value”, type = "0-")
28 lines(seat$Years, fitted_values, col = "red”, 1lwd =
2)

56

© 00 N O U b W N

— = = = =
B~ W NN = O

—_
ot

Chapter 7

Time Series Models for
Financial Data

R code Exa 7.2.1 ARCH 1 Series

Page no. 199

Answer may vary due to randomization

alpha0 <- 1

alphal <- 0.5

n <- 1000

set.seed (123)

epsilon <- rnorm(n)

sigma2 <- numeric(n)

y <- numeric(n)

for (t in 2:mn) {
sigma2[t] <- alphaO + alphal * y[t-1]"2
y[t] <- sqrt(sigma2[t]) * epsilon[t]

}

plot(y, type = "1”7, main = ”Simulated ARCH(1)
Process”, xlab = "Time”, ylab = ”"Value”)

act (y)

o7

N =

O N O Ut i W

10

11

12
13
14
15

16

N =

-~ W

R code Exa 7.2.2 Fitting GARCH models to stock data

Page No. 201

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (itsmr)

library(tseries)

library (rugarch)

E1032<- read.csv(”E1032.TSM”)

char_array <- E1032[39:193,]

matches <- gregexpr(” —7[0—9.]4+(?7:\\s*[Ee
1[+—-]7[0-9]+)?", char_array)

stock <- ts(as.numeric(unlist(regmatches(char_array,
matches))))

garch_spec <- ugarchspec(mean.model = list(armaOrder
= ¢c(0,0)),
variance.model = list(model
= "sGARCH”, garchOrder
= c(1,1)))
garch_fit <- ugarchfit(data = stock, spec = garch_
spec)
sigma <- sigma(garch_fit)
par (mfrow=c(2,1))
plot (stock,type = 'l’, col = ’blue’,ylab = "’
percentage returns’)
plot (sigma, type = '1l’, col = ’red’, ylab = '’

Volatility 7)

R code Exa 7.2.3 Fitting ARMA Models Driven by GARCH Noise

Page No. 203

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

library (itsmr)

Answer may vary due to software specifications

58

© 00 J & Ot

10
11

12

13
14
15
16
17

18

19
20

21
22
23
24

25
26

library (forecast)
library(tseries)
library (rugarch)
sunspot<- read.csv (”SUNSPOTS.TSM")
colnames (sunspot) [1]<- "spots”
sunspots<- ts(sunspot$spots)
sunspots_mean_corrected <- sunspots - mean(sunspots,
na.rm = TRUE)
fit_arima <- Arima(sunspots_mean_corrected, order =
c(4,0,3))
print (fit_arima)
residuals_arima <- fit_arima$residuals
p <- 1
q <- 1
spec <- ugarchspec(variance.model = list(model = 7
sGARCH” , garchOrder = c(p, q)),
mean.model = list(armaOrder = c
(4, 3), include.mean = TRUE),
distribution.model = "norm”)
fit_garch <- ugarchfit(spec = spec, data = residuals
_arima)
print (fit_garch)
n <- as.numeric(length(sunspots_mean_corrected))

aicc <- (((-2)*(fit_garch@fit$LLH))*(n/(n-p)))+ (((p
+q+2) *(2*n))/(n-p-q-2))

print (paste ("AICC value for the GARCH model:”, aicc)
)

print (" Parameters of the GARCH(1,1) model:")

print (coef (fit_garch))

R code Exa 7.5.1 Brownian motion
Page no. 213

Answer may vary due to randomization
T <- 10; n <- 1000; dt <- T / n

59

© 00 N O U

10
11

© 00 N O U i W N

T
W NN = O

QU = W N =

time_points <- seq(0, T, by dt)
set.seed (123)

increments <- rnorm(n, mean

0, sd = sqrt(dt))
B_t <- ¢c(0, cumsum(increments))

plot (time_points, B_t, type = "17,
main = ”Standard Brownian Motion B(t)”,
xlab = "Time”, ylab = "B(t)”,
col = "blue”, 1lwd = 2)

R code Exa 7.5.2 Poisson process

Page no. 214
lambda <- 5

T <- 10
set.seed (123)
jump_times <- cumsum(rexp (100, rate = lambda))

jump_times <- jump_times[jump_times <= T]
N_t <- seq_along(jump_times)

jump_times <- c(0, jump_times)

N_t <= c(0, N_t)

2 7

plot (jump_times, N_t, type = "s”,
main = " Poisson Process N(t)”,
xlab = ”"Time”, ylab = "N(t)”,
col = "blue”, 1lwd = 2)

R code Exa 7.5.3 Compound Poisson Process

Page no. 214

lambda <- 5; T <- 10; mu <- 0; sigma <- 1
set.seed (123)

jump_times <- cumsum(rexp (100, rate = lambda))
jump_times <- jump_times[jump_times <= T]

60

6 jump_sizes <- rnorm(length(jump_times), mean = mu,
sd = sigma)

7 X_t <- cumsum(jump_sizes)

8 jump_times <- c(0, jump_times)

9 X_t <- c(0, X_t)

10 plot(jump_times, X_t, type = "s”,

11 main = ”Compound Poisson Process X(t)”,
12 xlab = "Time”, ylab = "X(t)”,

13 col = "blue”, 1lwd = 2)

61

Chapter 8

Multivariate Time Series

R code Exa 8.1.1 Dow Jones and All Ordinaries Indices

Page No. 229

2 # Downloading link: https://storage.googleapis.com/

© 00 J O Ut i W

10

11
12
13
14

15

16
17

springer —extras/zip/2002/978—-0—387—21657—7.zip
library (forecast)
library(tseries)
dow<- read.csv(”DJAO2.TSM”, header = FALSE)
pc <- read.csv("DJAOPC2.TSM”, header = FALSE)
colnames (pc) [1]<- "stocks”
char _array <- dowl[,1]
matches <- gregexpr ("\\b\\d{3,}\\b”, char_array)
stock <- as.numeric(unlist(regmatches(char_array,
matches)))
dowjones <- ts(stock[c(TRUE, FALSE)])
Aus <- ts(stock[c(FALSE, TRUE)])
index <- seq_along(dowjones)

plot (index, dowjones, type = 'l’, col = ’blue’, 1lwd
= 2, ylim = range(c(dowjones ,1000)),
xlab = ’'Index’, ylab = ’Values’, main = ’Dow
jones and Australian ordinary ’)
lines (index, Aus, col = ’'red’, lwd = 2)

62

18

19
20
21
22
23
24
25

26
27
28
29
30
31

32
33
34
35
36

© 00 N O U = W

pcs <- separate(pc, col = 1, into = c(’dow”, "aus”),
sep = "\\s+")
dowjonesl <- ts(as.numeric(pcs$dow))
Ausl <- ts(as.numeric(pcs$aus))
acf (dowjonesl, main = 7 Series 17)
acf (Ausl, main = 7 Series 27)
ccfl <- ccf(dowjonesl, Ausl,plot = FALSE)
positive_lagl <- ccfl$lag >= 0
plot(ccfl$laglpositive_lagl], ccfl$acf[positive_lagl
1, type = "h”,
main = "7 Series 1 * Series 27,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(Ausl,dowjonesl ,plot = FALSE)
positive_lag2 <- ccf2$lag >= 0
plot (ccf2$8lag[positive_lag2], ccf2$acf[positive_lag?2
1, type = "h”,
main = " Series 2 * Series 17,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
plot (lag(dowjonesl, -1), Ausl, main=" Scatterplot”,
xlab="Lagged TS1”, ylab="TS2”, pch=19)

R code Exa 8.1.2 Sales with a leading indicator

Page No. 230

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (forecast)

library(tseries)

sales<- read.delim (”SALES.TSM”, header = FALSE)

leads<- read.delim("LEAD.TSM”, header = FALSE)

colnames (sales) [1]<- 7 sale”

colnames (leads) [1]<- 7"lead”

1s2 <- <cbind(sales, leads)

63

10
11
12
13
14
15
16
17

18
19
20
21
22
23

24
25
26

N =

© 00 J O U i W

10
11
12

lst <- ts(1ls2)

1st <- diff (1lst)

par (mfrow = c(2, 2))

acf(lst[, 2], main = 7 Series 17)
acf(lst[, 1], main = 7 Series 27)

ccfl <- ccf(lst[, 1], 1st[, 2],plot

positive_lagl <- ccfl$lag >= 0

plot (ccfl$lag[positive_lagl], ccfl$acf[positive_lagl

], type - ”h”,

main = 7 Series 2 * Series 17,

xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(lst[,2],1st[,1],plot
positive_lag2 <- ccf2$lag >= 0

plot (ccf2$lag[positive_lag2], ccf2$acf[positive_lag?

] s type = 77h77 s

main = 7 Series 1 * Series 27,

xlab = "Lag”, ylab = "CCF”)
abline(h = 0)

FALSE)

FALSE)

R code Exa 8.3.1 Sample correlations

Page No. 239

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)
library(tseries)

E731 <- read.delim(”E731A.TSM”,
Ets <- ts(E731)

par (mfrow = c(2, 2))

acf(Ets[, 2], main = 7 Series 17)
acf(Ets[, 1], main = 7 Series 27)

ccfl <- ccf(Ets[, 1], Ets[, 2],plot

positive_lagl <- ccfl$lag >= 0

plot (ccfl$lag[positive_lagl], ccfl$acf[positive_lagl

64

header=FALSE)

FALSE)

13
14
15
16
17
18

19
20
21

N =

N O U = W

10
11
12

1, type = 7"h”,
main = " Series 1 * Series 27,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(Ets[,2] ,Ets[,1],plot = FALSE)
positive_lag2 <- ccf2$lag >= O
plot(ccf2$lagl[positive_lag2], ccf2%acf[positive_lag?2
1, type = 7h7,
main = " Series 2 * Series 17,
xlab = ”"Lag”, ylab = "CCF”)
abline(h = 0)

R code Exa 8.6.1 Multivariate models fitted on stock data

Page No. 249

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

Answer may vary to unspecified function in problem

library (tidyr)

library(vars)

pc <- read.csv("DJAOPC2.TSM”, header = FALSE)

pcs <- separate(pc, col = 1, into = c("dow”, "aus’),
sep = "\\s+")

pcs$dow <- as.numeric(pcs$dow)

pcs$aus <- as.numeric(pcs$aus)

pcs_ts <- ts(pcs)

var_model <- VAR(pcs_ts,p=1,type = "none”

summary (var _model)

R code Exa 8.6.2 Multivariate models fitted on sales data

Page No. 249

65

[\)

© 00 N O U = W

10

11
12
13
14
15
16
17
18
19

N O U s W [N

© 0o

10

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library(vars)

library (tidyr)

library(stringr)

library (dplyr)

ls <- read.csv(”LS2.TSM” ,header = FALSE)

colnames (1s) [1]<- 7117

1s$11 <- trimws(1ls$ll,which = "left”)

lts <- separate(ls, col = 11, into = c(’1d”, "sales”
), sep = "\\s+")

1ts$1ld <- as.numeric(lts$ld)

lts$sales <- as.numeric(lts$sales)

lts <- ts(lts)

ltds <- diff(lts, lag = 1)

lag<-VARselect (lts,lag.max=10)

optimal <- lag$selection

estim <- VAR(ltds,p=5,type = "none”)

summary (estim)

estim$varresult

R code Exa 8.6.3 VAR 1 model on stock data

Page No. 251

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (tidyr)

library (itsmr)

library(vars)

pc <- read.csv("DJAOPC2.TSM”, header = FALSE)

pcs <- separate(pc, col = 1, into = c("dow”, "aus’),
sep = ”\\S—f—”)

pcs$dow <- as.numeric(pcs$dow)

pcs$aus <- as.numeric(pcs$aus)

pcs_ts <- ts(pcs)

66

var_model <- VAR(pcs_ts,p=1,type = "none”)

summary (var _model)

k <- 9

n <- length(pcs_ts)

log_likelihood <- LogLik(var_model)

aicc <- -2 * log_likelihood + 2 * k + (2 * k x (k +
1)) / (n - k - 1)

arm <- autofit(ts(pcs$aus),p=0:2,q9=0)

print (arm)

67

© 00 J O U i W N

—
o

11
12
13

Chapter 9

State Space Models

R code Exa 9.2.1 Random walk plus noise model

Page no.261

Answer varies due to randomness
set.seed (46)

n <- 100

sigma_v <- 4

sigma_w <- 8

M <- cumsum(rnorm(n, mean = 0, sd = sqrt(sigma_w)))
W <- rnorm(n, mean = 0, sd = sqrt(sigma_v))
Y <- M + W
plot(l:n, M, type = 717, col = "blue”, xlab = "Time”
, ylab = "Value”,
main = "Random Walk Plus Noise Model”)
points(l:n, Y, pch = 15, col = "red”)

acf (diff(Y), lag.max = 20)

R code Exa 9.5.2 International airline passengers

Page No. 278

68

[\)

© 00 N O U = W

10
11
12

13
14
15
16

N O O = W N =

© 0o

10
11

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

Adequate data not provided in example

library (ggplot2)

library (MASS)

library (KFAS)

airpass <- read.csv(7AIRPASS.TSM”, header = FALSE)

colnames (airpass) [1] <- ”"pass”

ggplot (airpass, aes(x = seq(as.Date(”71949—-01-01"),
as.Date(”71960—-12—-01"), by = "month”), y = pass))
+
geom_point () +
geom_line () +

labs(title = 7 Air passengers (Jan 1949 — Dec 1960)
x = "Time” ,
y = 7" Passengers”) +

theme_minimal ()
pass <- ts(airpass$pass)

R code Exa 9.8.3 Polio in the USA

Page No. 292

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (dplyr)

polio <- read.csv(”POLIO.TSM”, header = FALSE)

colnames (polio) [1] <- "pol”

ggplot (polio, aes(x = seq(as.Date(”1970-01-01"), as.
Date (71983—12—01"), by = "month”), y = pol)) +
geom_point () +
geom_line () +
labs(title = "Polio in US (Jan 1970 — Dec 1983)”7,

x = "Time” ,

69

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30
31

32
33
34
35
36

37

y = "Polio cases”) +
theme_minimal ()

polio$Month <- 1:length(polio$pol)
polio <- polio %>%

mutate (
t = Month,
ul = 1,
u2 =t / 1000,
u3 = cos(2 *x pi *x t / 12),
ud = sin(2 * pi *x t / 12),
ub = cos(2 * pi *x t / 6),
ué = sin(2 * pi * t / 6)

)

model <- 1m(pol ~ ul + u2 + u3 + u4 + ub + u6, data
= polio)

polio$Trend <- fitted(model)
ggplot(polio, aes(x = Month)) +

geom_point (aes(y = pol, color = ”Actual Cases”)) +
geom_line (aes(y = Trend, color = "Trend Estimate”)
) +
labs (
title = "Trend Estimate for Monthly U.S. Polio
Cases”,
x = "Month” ,
y = "Number of Cases”,
color = " Legend”
) +
scale_color_manual (values = c(” Actual Cases” =7
blue”, ”"Trend Estimate” = "red”)) +

theme_minimal ()

R code Exa 9.8.7 Goals Scored by England Against Scotland

1 # Page No. 299
2 # Downloading link: https://storage.googleapis.com/

70

© 00 g O O = W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35

36

springer —extras/zip/2002/978—-0—-387—-21657—7.zip
Answer varies due to inadequate data
library (ggplot2)
library (tidyr)
library (itsmr)
goals <- read.table(”GOALS.TSM”, header = FALSE)
colnames (goals) [1] <- " goal”
colnames (goals) [2] <-"Year”
Figure 9-8
ggplot (goals, aes(x = Year, y = goal)) +
geom_point () +
geom_line(col="blue’) +
labs(title = " Goals by England”,
x = "Years”,
y = "Goals”) +
theme _minimal ()
Figure 9-9
ggplot (na.omit (goals), aes(x = factor(goal))) +
geom_bar () +
xlab (" Goals”) +
ylab (7 Count”) +
ggtitle (" Histogram of Goals”) +
theme _minimal ()

data <- na.omit(goals)
delta_hat <- 0.844
alpha_0 <- 0.154
lambda_0 <- delta_hat / (1 - delta_hat)
n <- nrow(data)
alpha <- numeric(m);lambda <- numeric(n);pred <-
numeric (n)
alpha[1] <- alpha_o0
lambda[1] <- lambda_0
for (t in 2:n) {
alpha[t] <- alphal[t-1] + delta_hat * (data$goall[t
-1] - alphalt-1]1)
lambda[t] <- lambdal[t-1] + delta_hat * (1 - lambda
[t-11)

71

37
38
39
40

41
42

43
44
45
46

for

Year ,

Goals

pred[t] <- alphalt] / (1 + lambdalt])
}
ggplot(data.frame(Time = data$Year, pred
aes(x = Time, y = pred)) +
geom_line(color = "blue”) +
geom_point (data = data, aes(x
color = "red”) +
xlab(” Year”) +
ylab(” Goals”) +
ggtitle ("One—Step Predictors
theme_minimal ()

= pred),

y = goal),

Data”) +

72

Chapter 10

Forecasting Techniques

R code Exa 10.1.1 Predicted deaths by ARAR algorithm

1 # Page No. 312
2 # Downloading link: https://storage.googleapis.com/

O N O Ut i W

N

W

springer —extras/zip/2002/978—-0—387—21657—7.zip
library (itsmr)
library (forecast)
deaths <- read.csv(”DEATHS.TSM”, header = FALSE)
colnames (deaths) [1]<- " death”
dts <- ts(deaths$death)
arar_model <- arar(dts,h=24,o0pt=2)

R code Exa 10.2.1 Holt Winters non seasonal forecast

Page No. 316

Answer may vary due to the nature of forecast
function .

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (forecast)

73

© 0o N O Ot

\V)

O N O Ut i W

deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

colnames (deaths) [1]<- 7 death”

dts <- ts(deaths$death, freq=12, start = 1973)

hw_model <- HoltWinters(dts, gamma = FALSE)

forecast_values <- forecast::forecast (hw_model, n.
steps=2)

plot (forecast_values, main="Holt—Winters Forecast”,
xlab="Time”, ylab="Values”)

lines(dts, col="blue”)

R code Exa 10.3.1 Holt Winters seasonal forecast

Page No. 316

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)

deaths <- read.delim ("DEATHS.TSM”, header = FALSE)

colnames (deaths) [1]<- 7 death”

dts <- ts(deaths$death, freq=12, start = 1973)

hw_model <- HoltWinters (dts)

forecast_values <- forecast::forecast (hw_model, h
=24)

plot (forecast_values, main="Holt—Winters Forecast”,
xlab="Time”, ylab="Values”)

lines(dts, col="blue”)

74

S O = W [N

N

10
11

Chapter 11

Further Topics

R code Exa 11.4.1 Annual Minimum Water Levels in the Nile

Page No. 340

Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

nile <- read.csv(”NILE.TSM”, header = FALSE)

colnames(nile) [1]<- "water”
plot(nile$water ,xlab="time” ,ylab="water level” ,main=
"Nile river”,type = '17)

acf(nile$water ,main="ACF”)

best_model <- auto.arima(nile$water, stepwise =
FALSE, ic="aicc”, approximation = FALSE)

print (best_model$aicc)

best_arfima <-arfima(nile$water ,model = best_model)

print (best_arfima$aicc)

75

	
	 Introduction
	 Stationary Processes
	 ARMA Models
	 Spectral Analysis
	 Modeling and Forecasting with ARMA Processes
	 Nonstationary and Seasonal time series models
	 Time Series Models for Financial Data
	 Multivariate Time Series
	 State Space Models
	 Forecasting Techniques
	Further Topics

