
R Textbook Companion for
Introduction To Time Series And Forecasting
by Peter J. Brockwell, Richard A. Davis1

Created by
Ayush Kumar Nayak

B.Tech.
Mechanical Engineering

National Institute of Technology, Rourkela
Cross-Checked by

R TBC Team

February 5, 2026

1Funded by a grant from the National Mission on Education through ICT
- http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R
codes written in it can be downloaded from the ”Textbook Companion Project”
section at the website - https://r.fossee.in.

http://spoken-tutorial.org/NMEICT-Intro
https://r.fossee.in

Book Description

Title: Introduction To Time Series And Forecasting

Author: Peter J. Brockwell, Richard A. Davis

Publisher: Springer-verlag, New York, Usa

Edition: 3

Year: 2016

ISBN: ISBN 0-387-95351-5

1

R numbering policy used in this document and the relation to the above
book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means
an R code whose theory is explained in Section 2.3 of the book.

2

Contents

List of R Codes 4

1 Introduction 5

2 Stationary Processes 17

3 ARMA Models 20

4 Spectral Analysis 26

5 Modeling and Forecasting with ARMA Processes 34

6 Nonstationary and Seasonal time series models 45

7 Time Series Models for Financial Data 55

8 Multivariate Time Series 60

9 State Space Models 66

10 Forecasting Techniques 71

11 Further Topics 73

3

List of R Codes

Exa 1.1.1 Australian wine sales 5
Exa 1.1.3 Accidental deaths . 5
Exa 1.1.4 Signal Detection Problem 6
Exa 1.1.5 Population of the USA 6
Exa 1.1.6 Strikes in USA . 7
Exa 1.3.3 Random walk . 8
Exa 1.3.4 Regression on population data 8
Exa 1.3.5 Level of Lake Huron 9
Exa 1.3.6 Harmonic regression on accidental deaths 10
Exa 1.4.6 Random noise . 10
Exa 1.5.1 Moving average of strikes 11
Exa 1.5.2 Smooth exponential and low pass filter 12
Exa 1.5.3 Differenced series . 12
Exa 1.5.4 Deseasonalization and seasonal component 13
Exa 1.5.5 Estimation of seasonal component 14
Exa 1.6.1 ACF on signal data 15
Exa 2.4.3 MA1 Process . 17
Exa 2.4.4 AR1 Process . 17
Exa 2.5.5 Durbin Levinson and innovations algorithm 19
Exa 3.1.1 ARMA 1 1 . 20
Exa 3.1.2 AR2 Process . 20
Exa 3.1.3 ARMA 2 1 . 21
Exa 3.2.4 General AR2 process 21
Exa 3.2.8 Overshorts series . 22
Exa 3.2.9 The sunspot numbers 23
Exa 3.3.4 Numerical prediction of ARMA 2 3 24
Exa 3.3.5 h step prediction of ARMA 25
Exa 4.1.2 Linear combination of sinusoids 26

4

Exa 4.1.4 Spectral density of AR 1 27
Exa 4.1.5 Spectral density of MA 1 29
Exa 4.2.2 Sunspot numbers spectral density 30
Exa 4.4.1 Spectral density of AR 2 31
Exa 5.1.1 The Dow Jones Utilities Index 34
Exa 5.1.2 MA 1 model forecasting 35
Exa 5.1.3 Dow jones utilities index using burg model 35
Exa 5.1.4 Modeling on Lake data 36
Exa 5.1.5 Estimations on Dow jones utilities index 37
Exa 5.1.6 Estimations on Lake data 38
Exa 5.1.7 Lake data analysis using Hannan algorithm 39
Exa 5.2.4 Burg and yule walker model comparison 40
Exa 5.2.5 Autofit on Lake data 41
Exa 5.4.1 Forecasts on overshorts data 42
Exa 5.5.1 FPE based selection of an AR model for Lake data . 43
Exa 5.5.2 AICC based model selection 44
Exa 6.1.1 ARIMA 1 1 0 Process 45
Exa 6.2.1 Burg model on Australian wine data 46
Exa 6.2.2 Autofit for minimum AICC model 47
Exa 6.3.1 Test statistic on simulated data 47
Exa 6.3.2 Model parameters for overshorts data 48
Exa 6.4.1 ARIMA 1 1 0 model on Dow jones utilities index . . . 49
Exa 6.5.2 ACF of seasonal MA model 49
Exa 6.5.3 ACF of seasonal AR model 50
Exa 6.5.4 ACF of monthly accidental deaths data 50
Exa 6.5.5 Forecasting monthly accidental deaths 51
Exa 6.6.1 GLS based Model parameter estimation 51
Exa 6.6.2 Model parameters estimation for Lake data 52
Exa 6.6.3 Seat belt legislation 53
Exa 7.2.1 ARCH 1 Series . 55
Exa 7.2.2 Fitting GARCH models to stock data 56
Exa 7.2.3 Fitting ARMA Models Driven by GARCH Noise . . . 56
Exa 7.5.1 Brownian motion . 57
Exa 7.5.2 Poisson process . 58
Exa 7.5.3 Compound Poisson Process 58
Exa 8.1.1 Dow Jones and All Ordinaries Indices 60
Exa 8.1.2 Sales with a leading indicator 61
Exa 8.3.1 Sample correlations 62

5

Exa 8.6.1 Multivariate models fitted on stock data 63
Exa 8.6.2 Multivariate models fitted on sales data 63
Exa 8.6.3 VAR 1 model on stock data 64
Exa 9.2.1 Random walk plus noise model 66
Exa 9.5.2 International airline passengers 66
Exa 9.8.3 Polio in the USA . 67
Exa 9.8.7 Goals Scored by England Against Scotland 68
Exa 10.1.1 Predicted deaths by ARAR algorithm 71
Exa 10.2.1 Holt Winters non seasonal forecast 71
Exa 10.3.1 Holt Winters seasonal forecast 72
Exa 11.4.1 Annual Minimum Water Levels in the Nile 73

6

Chapter 1

Introduction

R code Exa 1.1.1 Australian wine sales

1 # Page No . 2
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 wine_data <- read.delim(”WINE.TSM”, header = FALSE)

5 colnames(wine_data)[1] <- ” S a l e s ”
6 ggplot(wine_data , aes(x = seq(as.Date(”1980−01−01”),

as.Date(”1991−10−01”), by = ”month”), y = Sales)

) +

7 geom_point() +

8 geom_line() +

9 labs(title = ” Monthly Wine S a l e s (Jan 1980 − Oct
1991) ”,

10 x = ”Months”,
11 y = ” S a l e s ”) +

12 theme_minimal ()

R code Exa 1.1.3 Accidental deaths

7

1 # Page No . 2
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” dea th s ”
6 ggplot(deaths , aes(x = seq(as.Date(”1973−01−01”), as

.Date(”1978−12−01”), by = ”month”), y = deaths))

+

7 geom_point(shape = 15, size = 1) +

8 geom_line() +

9 labs(title = ” Deaths (Jan 1973 − Nov 1978) ”,
10 x = ”Months”,
11 y = ” Deaths ”) +

12 theme_minimal ()

R code Exa 1.1.4 Signal Detection Problem

1 # Page No . 3
2 set.seed (123)

3 t <- 1:200

4 N <- rnorm (200, mean = 0, sd = 0.5)

5 X <- cos(t/10)

6 plot(t, X, type = ” l ”, col = ” b lue ”, xlab = ” t ”,
ylab = ”X”, main = ” S i g n a l p l o t ”,lwd=2)

7 points(t, N, pch = 16, col = ” b l a c k ”, bg = ” b l a c k ”,
cex = 0.5)

R code Exa 1.1.5 Population of the USA

1 # Page No . 4
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p

8

3 library(ggplot2)

4 uspop= read.csv(”USPOP.TSM”)
5 names(uspop)[names(uspop) == ” X3929214 ”] <- ”

p o p u l a t i o n ”
6 start_year =1790

7 num_repeated =20

8 interval =10

9 ggplot(uspop , aes(x=seq_len(num_repeated) * interval

+ start_year , y = population)) +

10 geom_point() +

11 geom_line() +

12 labs(title = ” Popu l a t i on ”,
13 x = ” Years ”,
14 y = ”US p o p u l a t i o n ”) +

15 theme_minimal ()

R code Exa 1.1.6 Strikes in USA

1 # Page No . 4
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 strike <- read.delim(”STRIKES .TSM”, header = FALSE)

5 colnames(strike)[1] <- ” S t r i k e s ”
6 start_year =1951

7 end_year =1980

8 ggplot(strike , aes(x=seq(start_year ,end_year), y =

Strikes)) +

9 geom_point() +

10 geom_line() +

11 labs(title = ” S t r i k e s i n US”,
12 x = ” Years ”,
13 y = ” S t r i k e s ”) +

14 theme_minimal ()

9

R code Exa 1.3.3 Random walk

1 # Page no . 7
2 set.seed (123)

3 t <- 200

4 steps <- rnorm(t)

5 random_walk <- cumsum(steps)

6 plot (0:t, c(0, random_walk), type = ” l ”, col = ” b lue
”,

7 xlab = ”Time”, ylab = ” Value ”, main = ” Simple
Random Walk”)

8 points (0:t, c(0, random_walk), col = ” red ”, pch = 1)

R code Exa 1.3.4 Regression on population data

1 # Page No . 8
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 uspop= read.delim(”USPOP.TSM”, header = FALSE)

5 colnames(uspop)[1] <- ” p o p u l a t i o n ”
6 start_year =1790

7 num_repeated =21

8 interval =10

9 uspop$years <- seq_len(num_repeated) * interval+

start_year

10 fit <-lm(population ~ poly(years ,2,raw = TRUE), data

= uspop)

11 ggplot(uspop , aes(x=years , y=population)) +

12 geom_point() +

13 geom_smooth(method = ”lm”, formula = y ~poly(x,2,

raw=TRUE), se = FALSE) +

10

14 labs(title = ”US Popu la t i on ”,
15 x = ” Years ”,
16 y = ” Popu l a t i on ”) +

17 theme_minimal ()

R code Exa 1.3.5 Level of Lake Huron

1 # Page No . 9
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 hudson= read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(hudson)[1] <- ” l e v e l ”
6 start_year =1875

7 end_year =1972

8 hudson$years <-(seq(start_year ,end_year))

9 fit <-lm(level~years ,data = hudson)

10 residuals <- resid(fit)

11 residual_df <- data.frame(years = hudson$years ,

residuals = residuals)

12 par(mfrow=c(1,2))

13 # Figur e 1−9
14 plot(hudson$years , hudson$level , type = ”o”,
15 main = ” Lake Hudson”, xlab = ” Years ”, ylab = ”

Water l e v e l s ”, pch = 19)

16 abline(fit , col = ” b lue ”,lw=2)
17 # Figur e 1−10
18 plot(residual_df$years ,residual_df$residuals , type =

”o”,pch = 19,

19 xlab = ” Years ”, ylab = ” R e s i d u a l s ”, main = ”
R e s i d u a l s p l o t ”)

20 abline(h = 0, col = ” b lue ”, lw = 2)

21 print(coef(fit))

11

R code Exa 1.3.6 Harmonic regression on accidental deaths

1 # Page No . 11
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” dea th s ”
6 n <- length(deaths$deaths)

7 time <- 1:n

8 f1 <- n / 12

9 f2 <- n / 6

10 fit <- lm(deaths$deaths ~ sin(2 * pi * time / f1) +

cos(2 * pi * time / f1) +

11 sin(2 * pi * time / f2) + cos(2 * pi *

time / f2))

12 fitted_values <- predict(fit)

13 plot(time , deaths$deaths , type = ”p”, col = ” b l a c k ”,
pch = 15, xlab = ”Time”, ylab = ” Value ”,

14 main = ” Harmonic F i t ”)
15 lines(time , fitted_values , col = ” b lue ”, lw =2)

R code Exa 1.4.6 Random noise

1 # Page No . 16
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 set.seed (123)

5 noise <- rnorm (200, mean = 0, sd = 1)

6 df <- data.frame(Index = 1:200 , Noise = noise)

7 ggplot(df, aes(x = Index , y = Noise)) +

12

8 geom_point()+

9 geom_line() +

10 labs(x = ” Index ”, y = ” No i s e ”, title = ” S imula ted
N(0 , 1) No i s e ”)+

11 theme_minimal ()

12 acf_result <- acf(noise , plot = FALSE)

13 n <- length(noise)

14 bounds <- 1.96 / sqrt(n)

15 acf_df <- data.frame(Lag = acf_result$lag , ACF = acf

_result$acf)

16 ggplot(acf_df, aes(x = Lag , y = ACF)) +

17 geom_hline(yintercept = c(-bounds , bounds)) +

18 geom_hline(yintercept = 0) +

19 geom_segment(aes(xend = Lag , yend = 0)) +

20 labs(x = ”Lag”, y = ”ACF”, title = ” Sample
A u t o c o r r e l a t i o n Funct ion (ACF) ”) +

21 ylim(-1, 1)+

22 theme_minimal ()

R code Exa 1.5.1 Moving average of strikes

1 # Page No . 22
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(zoo)

5 strike <- read.csv(”STRIKES .TSM”, header =FALSE)

6 colnames(strike)[1] <- ” S t r i k e s ”
7 start_year =1951

8 end_year =1980

9 window_size <- 5

10 strike$Moving_Avg <- rollmean(strike$Strikes , k =

window_size , fill = NA)

11 strike$residuals <- strike$Strikes -strike$Moving_Avg

12 # Figur e 1−18

13

13 ggplot ()+

14 geom_line(data=strike , aes(x = seq(start_year ,end_

year),y=Moving_Avg))+

15 geom_point(data=strike , aes(x = seq(start_year ,end

_year),y=strike$Strikes))+

16 labs(x = ” Year ”, y = ” S t r i k e s ”, title = ” S t r i k e s
Data with Moving Average ”)+

17 theme_minimal ()

18 # Figur e 1−19
19 ggplot(data=strike , aes(x = seq(start_year ,end_year)

,y=residuals))+

20 geom_line()+

21 geom_point()+

22 labs(x = ” Year ”, y = ” S t r i k e s ”, title = ” S t r i k e s
Data r e s i d u a l s ”)+

23 theme_minimal ()

R code Exa 1.5.2 Smooth exponential and low pass filter

1 # Page No . 24
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 strike <- read.csv(”STRIKES .TSM”, header = FALSE)

5 colnames(strike)[1] <- ” S t r i k e s ”
6 # Figur e 1−21
7 plot(smooth.exp(ts(strike$Strikes) ,0.4))

8 lines(smooth.exp(ts(strike$Strikes) ,0.4))

9 # Figur e 1−22
10 plot(smooth.fft(ts(strike$Strikes) ,0.4))

11 lines(smooth.fft(ts(strike$Strikes) ,0.4))

R code Exa 1.5.3 Differenced series

14

1 # Page No . 11
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(pracma)

5 library(dplyr)

6 uspop= read.delim(”USPOP.TSM”, header = FALSE)

7 colnames(uspop)[1] <- ” p o p u l a t i o n ”
8 start_year =1790

9 num_repeated =21

10 interval =10

11 uspop$years <- seq_len(num_repeated) * interval+

start_year

12 diff2 <- diff(diff(uspop$population))

13 uspop <- slice(uspop , -(1:2))

14 uspop$diff2 <- diff2

15 ggplot(uspop , aes(x = years , y = diff2)) +

16 geom_point()+

17 geom_line() +

18 labs(title = ” Second−Order D i f f e r e n c e s o f
Popu l a t i on Data”,

19 x = ” Years ”, y = ” Second−Order D i f f e r e n c e s ”)+
20 theme_minimal ()

R code Exa 1.5.4 Deseasonalization and seasonal component

1 # Page No . 28
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(pracma)

5 deaths <-read.delim(”DEATHS.TSM”, header =FALSE)

6 deaths$years <- seq(as.Date(”1973−01−01”), as.Date(”
1978−12−01”), by = ”month”)

7 period <- 12

15

8 colnames(deaths)[1] <- ” dea th s ”
9 decomposition <- decompose(ts(deaths$deaths ,

frequency = period))

10 seasonal_component <- decomposition$seasonal

11 deseasonalized_data <- deaths$deaths - seasonal_

component

12 deseasonalized_df <- data.frame(years = deaths$years

, deseasonalized_deaths = deseasonalized_data)

13 seasonal_component_df <- data.frame(years = deaths$

years , seasonal_component = seasonal_component)

14 # Figur e 1−24
15 ggplot(deseasonalized_df, aes(x = years , y =

deseasonalized_deaths)) +

16 geom_line(color = ” b lue ”) +

17 geom_point()+

18 labs(x = ” Years ”, y = ” D e s e a s o n a l i z e d Deaths ”,
title = ” D e s e a s o n a l i z e d Deaths ”) +

19 theme_minimal ()

20 # Figur e 1−25
21 ggplot(seasonal_component_df , aes(x = years , y =

seasonal_component)) +

22 geom_line(color = ” red ”) +

23 geom_point()+

24 labs(x = ” Years ”, y = ” S e a s o n a l Component”, title

= ” S e a s o n a l Component”) +

25 theme_minimal ()

R code Exa 1.5.5 Estimation of seasonal component

1 # Page No . 28
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(dplyr)

5 deaths= read.delim(”DEATHS.TSM”, header = FALSE)

16

6 colnames(deaths)[1] <- ” dea th s ”
7 deaths$months=seq(as.Date(”1973−01−01”), as.Date(”

1978−12−01”),by= ’ month ’)
8 diff1 <- diff(deaths$deaths , lag = 12)

9 deaths <- slice(deaths , -(1:12))

10 deaths$diff1 <- diff1

11 # Figur e 1−26
12 ggplot(deaths , aes(x = months , y = diff1)) +

13 geom_point()+

14 geom_line() +

15 labs(title = ” F i r s t−Order D i f f e r e n c e s o f dea th s
Data ”,

16 x = ” months ”, y = ” F i r s t−Order D i f f e r e n c e s ”)+
17 theme_minimal ()

18 # Figur e 1−27
19 diff2 <- diff(deaths$diff1)

20 deaths <- slice(deaths ,-1)

21 deaths$diff2 <- diff2

22 ggplot(deaths , aes(x = months , y = diff2)) +

23 geom_point()+

24 geom_line() +

25 labs(title = ” Second−Order D i f f e r e n c e s o f dea th s
Data ”,

26 x = ” months ”, y = ” Second−Order D i f f e r e n c e s ”)
+

27 theme_minimal ()

R code Exa 1.6.1 ACF on signal data

1 # Page No . 33
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 signal <- read.delim(”SIGNAL .TSM”, header = FALSE)

4 colnames(signal)[1] <- ” s i g n a l s ”
5 acf_values <- acf(signal$signals , plot = FALSE)$acf

17

6 n <- length(signal$signals)

7 conf_bound <- 1.96 / sqrt(n)

8 plot(acf_values , ylim = c(-conf_bound , conf_bound),

9 main = ” Sample A u t o c o r r e l a t i o n Funct ion (ACF) ”,
10 ylab = ”ACF”, xlab = ”Lag”, type = ”h”)
11 abline(h = c(-conf_bound , conf_bound), col = ” red ”,

lty = 2)

12 abline(h = 0, lty = 2)

18

Chapter 2

Stationary Processes

R code Exa 2.4.3 MA1 Process

1 # Page No . 53
2 n <- 200

3 set.seed (123)

4 Z <- rnorm(n)

5 X <- numeric(n)

6 X[1] <- Z[1]

7 for (i in 2:n) {

8 X[i] <- Z[i] - 0.8 * Z[i-1]

9 }

10 acf_values <- acf(X, plot = FALSE)$acf

11 plot (0:40, acf_values [1:41] , type = ”h”, ylim = c

(-1, 1),

12 xlab = ”Lag”, ylab = ”ACF”, main = ” Sample
A u t o c o r r e l a t i o n Funct ion f o r MA(1) ”)

13 abline(h = c(-1.96/sqrt(n), 1.96/sqrt(n)), col = ”
red ”, lty = 2)

14 abline(h = 0, col = ” b lue ”, lty = 1)

R code Exa 2.4.4 AR1 Process

19

1 #. .
2 # Page No . 54
3 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
4 hudson= read.csv(”LAKE.TSM”)
5 names(hudson)[names(hudson) == ”X10 . 3 8 ”] <- ” l e v e l ”
6 start_year =1876

7 end_year =1972

8 hudson$years <- seq(start_year ,end_year)

9 fit <-lm(level~years ,data = hudson)

10 residuals <- resid(fit)

11 residuals_df <- data.frame(years = hudson$years ,

residuals = residuals)

12 n <- nrow(residuals_df)

13 phi <- 0.791

14 model_acf <- function(i) {

15 phi^i

16 }

17 confidence_bounds <- function(i) {

18 1.96 * (n^(-0.5)) * sqrt (((1 - (phi^(2*i))) * (1 +

(phi^2))) / (1 - (phi^2)))

19 }

20 acf_values <- acf(residuals_df$residuals , plot =

FALSE)$acf

21 upper_conf_bounds <- sapply (1:40, function(i) {

22 confidence_bounds(i) + (phi^i)

23 })

24 lower_conf_bounds <- sapply (1:40, function(i) {

25 (phi^i) - confidence_bounds(i)

26 })

27 plot (0:40 , acf_values [1:41] , type = ”h”, ylim = c

(-1, 1),

28 xlab = ”Lag”, ylab = ”ACF”, main = ” Sample
A u t o c o r r e l a t i o n Funct ion o f R e s i d u a l s (AR(1)
) ”)

29 lines (1:40, upper_conf_bounds , col = ” red ”, lty = 2)

30 lines (1:40, lower_conf_bounds , col = ” red ”, lty = 2)

31

20

32 # Plo t the model ACF
33 points (1:40, sapply (1:40 , model_acf), type = ”b”,

col = ” b lue ”)

R code Exa 2.5.5 Durbin Levinson and innovations algorithm

1 # Page no . 64
2 compute_autocovariance <- function(phi) {

3 gamma_0 <- 1 + phi^2

4 gamma_1 <- -phi

5 return(list(gamma_0 = gamma_0, gamma_1 = gamma_1))

6 }

7 innovation_algorithm <- function(gamma) {

8 theta_11 <- -gamma$gamma_1 / gamma$gamma_0

9 return(list(theta_11 = theta_11))

10 }

11 durbin_levinson_algorithm <- function(gamma) {

12 phi_11 <- gamma$gamma_1 / gamma$gamma_0

13 sigma_1_squared <- gamma$gamma_0 * (1 - phi_11^2)

14 return(list(phi_11 = phi_11, sigma_1_squared =

sigma_1_squared))

15 }

16 phi <- 0.9

17 gamma <- compute_autocovariance(phi)

18 theta <- innovation_algorithm(gamma)

19 phi_result <- durbin_levinson_algorithm(gamma)

20 cat(paste0(” t h e t a _11 = ”, theta$theta_11, ”\n”))
21 cat(paste0(” ph i _11 = ”, phi_result$phi_11, ”\n”))

21

Chapter 3

ARMA Models

R code Exa 3.1.1 ARMA 1 1

1 # Page no . 7 6
2 ar_params <- c(0.5)

3 ma_params <- c(0.4)

4 is_invertible <- function(ma_params) {

5 roots <- polyroot(c(1, ma_params))

6 all(abs(roots) > 1)

7 }

8

9 invertibility_status <- is_invertible(ma_params)

10 invertibility_status

R code Exa 3.1.2 AR2 Process

1 # Page no . 7 6
2 # C o e f f i c i e n t s o f AR(2) model
3 phi1 <- 0.7

4 phi2 <- -0.1

5 poly_coefs <- c(1, -phi1 , -phi2)

22

6 roots <- polyroot(poly_coefs)

7 cat(” Roots o f the c h a r a c t e r i s t i c po lynomia l (z e r o s
o f the AR(2) p r o c e s s) : \ n”)

8 cat(roots , ”\n”)

R code Exa 3.1.3 ARMA 2 1

1 # Page no . 77
2 ar_params <- c(-0.75, 0.5625)

3 ma_params <- c(1.25)

4 is_invertible <- function(ma_params) {

5 roots <- polyroot(c(1, ma_params))

6 all(abs(roots) > 1)

7 }

8 invertibility_status <- is_invertible(ma_params)

9 invertibility_status

R code Exa 3.2.4 General AR2 process

1 # Page No . 80
2 # Figur e 3−1
3 library(stats)

4 xi1 <- 2

5 xi2 <- 5

6 phi1 <- 1/xi1 + 1/xi2

7 phi2 <- -(1/xi1) * (1/xi2)

8 set.seed (123)

9 n <- 1000

10 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

11 acf(ar_process , main = ” Sample ACF o f AR(2) P r o c e s s ”
)

12 # Figur e 3−2

23

13 xi1 <- 10/9

14 xi2 <- 2

15 phi1 <- 1/xi1 + 1/xi2

16 phi2 <- -(1/xi1) * (1/xi2)

17 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

18 acf(ar_process , main = ” Sample ACF o f AR(2) P r o c e s s ”
)

19 # Figur e 3−3
20 xi1 <- -10/9

21 xi2 <- 2

22 phi1 <- 1/xi1 + 1/xi2

23 phi2 <- -(1/xi1) * (1/xi2)

24 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

25 acf(ar_process , main = ” Sample ACF o f AR(2) P r o c e s s ”
)

26

27 # Figur e 3−4
28 xi1 <- complex(real = 2/3, imaginary = 2*sqrt (3)/3)

29 xi2 <- complex(real = 2/3, imaginary = -2*sqrt (3)/3)

30 phi1 <- Re(1/xi1 + 1/xi2)

31 phi2 <- Re(-(1/xi1) * (1/xi2))

32 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

33 acf(ar_process , main = ” Sample ACF o f AR(2) P r o c e s s ”
)

R code Exa 3.2.8 Overshorts series

1 # Page No . 84
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 oshorts <- read.csv(”OSHORTS.TSM”, header =FALSE)

4 colnames(oshorts)[1] <- ” o v e r s h o r t s ”

24

5 oshorts$days <- seq(1,nrow(oshorts))

6 # Figur e 3−5
7 plot(oshorts$days ,oshorts$overshorts , xlab = ”Days”,

ylab = ” O v e r s h o r t s ”,
8 type = ’ o ’ , col = ” b lue ”)
9 abline(h=0)

10 # Figur e 3−6
11 acf_result <- acf(oshorts$overshorts , plot = FALSE)

12 n <- length(oshorts)

13 bounds <- 1.96 * ((1 + 2 * acf_result$acf [2]^2) ^(1/

2)) / sqrt(n)

14 plot(acf_result , main = ” Sample ACF with Bounds”)
15 print(mean(oshorts$overshorts))

16 acvf <-acf(oshorts$overshorts , plot= FALSE , type = ’
c o v a r i a n c e ’)

17 print(acvf$acf [1])

18 print(acvf$acf [2])

R code Exa 3.2.9 The sunspot numbers

1 # Page No . 86
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 spots <- read.csv(”SUNSPOTS .TSM”,header = FALSE)

5 colnames(spots)[1] <- ” s u n s p o t s ”
6 pacf_result <- pacf(spots , plot = FALSE)

7 bounds <- 1.96 / sqrt (100)

8 plot(pacf_result , main = ” Sample PACF”)
9 print(pacf_result)

10 acvf <-acf(spots$sunspots , plot= FALSE , type = ’
c o v a r i a n c e ’)

11 print(acvf$acf [1])

12 print(acvf$acf [2])

13 print(acvf$acf [3])

25

R code Exa 3.3.4 Numerical prediction of ARMA 2 3

1 # Page no . 90
2 # Answer may vary due to randomiza t i on i n s i m u l a t i o n
3 library(forecast)

4 ar_params <- c(1,-0.24)

5 ma_params <- c(0.4, 0.2, 0.1)

6 set.seed (46)

7 n <- 10

8 arma_process <- arima.sim(model = list(ar = ar_

params , ma = ma_params), n = n)

9 print(arma_process)

10 acf_values <- acf(arma_process , type=” c o v a r i a n c e ”,
plot=FALSE)$acf

11 gamma_0 <- acf_values [1]

12 gamma_1 <- acf_values [2]

13 gamma_2 <- acf_values [3]

14 cat(”gamma_0 =”, gamma_0, ”\n”)
15 cat(”gamma_1 =”, gamma_1, ”\n”)
16 cat(”gamma_2 =”, gamma_2, ”\n”)
17 innovations_algorithm <- function(arma_process , n_

steps) {

18 n <- length(arma_process)

19 predictions <- numeric(n_steps)

20 e <- numeric(n + n_steps)

21 phi <- numeric(n + n_steps)

22 theta <- numeric(n + n_steps)

23 for (i in 1:n_steps) {

24 predictions[i] <- sum(ar_params * arma_process [(

n-i+1):(n-i+2)])

25 + sum(ma_params * e[(n-i+1):(n-i+3)])

26 e[n+i] <- arma_process[i] - predictions[i]

27 }

28 return(predictions)

26

29 }

30 predictions <- innovations_algorithm(arma_process ,

10)

31 print(predictions)

R code Exa 3.3.5 h step prediction of ARMA

1 # Page no . 91
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 ar_params <- c(1,-0.24)

5 ma_params <- c(0.4, 0.2, 0.1)

6 E334 <- read.delim(”E334 .TSM”, header = FALSE)

7 colnames(E334)[1] <- ”E”
8 Ets <- ts(E334$E)

9 arma_model <- Arima(Ets , order=c(2, 0, 3))

10 forecasts <- forecast(arma_model , h=10)

11 cat(”\ nFor e ca s t ed v a l u e s f o r the next 10 s t e p s : \ n”)
12 print(forecasts$fitted)

27

Chapter 4

Spectral Analysis

R code Exa 4.1.2 Linear combination of sinusoids

1 # Page no . 101
2 # Answer may vary due to randomiza t i on
3 library(ggplot2)

4 k <- 2

5 omega <- seq(pi/4, pi/6, length.out = k)

6 sigma2 <- 9

7 t <- 1:100

8 set.seed (123)

9 A <- rnorm(k, mean = 0, sd = sqrt(sigma2))

10 B <- rnorm(k, mean = 0, sd = sqrt(sigma2))

11 X_t <- sapply(t, function(ti) {

12 sum(A * cos(omega * ti) + B * sin(omega * ti))

13 })

14 df <- data.frame(Time = t, Value = X_t)

15 ggplot(df, aes(x = Time , y = Value)) +

16 geom_line() +

17 geom_point()+

18 ggtitle(” Sample Path ”) +

19 xlab(”Time”) +

20 ylab(”X(t) ”) +

21 theme_minimal ()

28

22 F_lambda <- function(lambda , omega , sigma2) {

23 sapply(lambda , function(l) {

24 sum(sigma2 * (0.5 * (l >= -omega & l < omega) +

1.0 * (l >= omega)))

25 })

26 }

27 lambda <- seq(-pi , pi, length.out = 1000)

28 F_values <- F_lambda(lambda , omega , sigma2)

29 df_F <- data.frame(Lambda = lambda , F_Lambda = F_

values)

30 ggplot(df_F, aes(x = Lambda , y = F_Lambda)) +

31 geom_step() +

32 ggtitle(” S p e c t r a l D i s t r i b u t i o n Funct ion F() ”) +

33 xlab(” ”) +

34 ylab(”F() ”) +

35 theme_minimal ()

R code Exa 4.1.4 Spectral density of AR 1

1 # Page no . 103
2 library(ggplot2)

3 library(stats)

4 set.seed (123)

5 n <- 1000

6 # Figur e 4−3
7 phi <- 0.7

8 sigma2 <- 1

9 density <- function(lambda , phi , sigma2) {

10 1 / (2 * pi) * sigma2 / (1 + phi^2 - 2 * phi * cos

(lambda))

11 }

12 lambda <- seq(0, pi, length.out = 1000)

13 values <- density(lambda , phi , sigma2)

14 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

29

15 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

16 geom_line() +

17 ggtitle(” S p e c t r a l Dens i ty ”) +

18 xlab(” ”) +

19 ylab(” S p e c t r a l Dens i ty ”) +

20 theme_minimal ()

21 # Figur e 4−4
22 phi <- -0.7

23 sigma2 <- 1

24 density <- function(lambda , phi , sigma2) {

25 1 / (2 * pi) * sigma2 / (1 + phi^2 - 2 * phi * cos

(lambda))

26 }

27 lambda <- seq(0, pi, length.out = 1000)

28 values <- density(lambda , phi , sigma2)

29 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

30 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

31 geom_line() +

32 ggtitle(” S p e c t r a l Dens i ty ”) +

33 xlab(” ”) +

34 ylab(” S p e c t r a l Dens i ty ”) +

35 theme_minimal ()

36 # Figur e 4−5
37 phi <- 0.7

38 ar_process <- arima.sim(model = list(ar = c(phi)), n

= n)

39 acf(ar_process , main = ”ACF o f AR(1) P r o c e s s ”)
40 # Figur e 4−6
41 phi <- -0.7

42 ar_process <- arima.sim(model = list(ar = c(phi)), n

= n)

43 acf(ar_process , main = ”ACF o f AR(1) P r o c e s s ”)

30

R code Exa 4.1.5 Spectral density of MA 1

1 # Page no . 105
2 library(ggplot2)

3 theta <- 0.9

4 sigma2 <- 1

5 density <- function(lambda , theta , sigma2) {

6 sigma2 / (2 * pi) * (1 + theta^2 + 2 * theta * cos

(lambda))

7 }

8 lambda <- seq(0, pi, length.out = 1000)

9 values <- density(lambda , theta , sigma2)

10 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

11 # Figur e 4−7
12 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

13 geom_line() +

14 ggtitle(” S p e c t r a l Dens i ty o f MA(1) P r o c e s s ”) +

15 xlab(expression(lambda)) +

16 ylab(expression(f(lambda))) +

17 theme_minimal ()

18 # Figur e 4−8
19 theta <- -0.9

20 sigma2 <- 1

21 density <- function(lambda , theta , sigma2) {

22 sigma2 / (2 * pi) * (1 + theta^2 + 2 * theta * cos

(lambda))

23 }

24 lambda <- seq(0, pi, length.out = 1000)

25 values <- density(lambda , theta , sigma2)

26 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

27 ggplot(df_spectral , aes(x = Lambda , y =

31

SpectralDensity)) +

28 geom_line() +

29 ggtitle(” S p e c t r a l Dens i ty o f MA(1) P r o c e s s ”) +

30 xlab(expression(lambda)) +

31 ylab(expression(f(lambda))) +

32 theme_minimal ()

R code Exa 4.2.2 Sunspot numbers spectral density

1 # Page No . 110
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(TSA)

5 library(stats)

6 library(itsmr)

7 spots= read.csv(”SUNSPOTS .TSM”, header =FALSE)

8 colnames(spots)[1] <- ” s u n s p o t s ”
9 periodogram <- spec.pgram(spots , log = ”no”, plot =

FALSE)

10 freq <- periodogram$freq

11 spec <- periodogram$spec

12 weights <- rep(1/3, 3)

13 freq <- freq * (2 * pi)

14 smoothed_spec <- stats:: filter(spec , filter=weights ,

sides =2)

15 # Figur e 4−9
16 p <- periodogram(ts(spots$sunspots), q = 1, opt = 0)

17 plot(p$freq ,(p$spec)/(2*pi), type = ”o−”, pch=19,

xlab = ” f r e q u e n c y ”, ylab = ” s p e c t r a l d e n s i t y ”)
18 # Figur e 4−10
19 df <- data.frame(freq = freq , smoothed_spec =

smoothed_spec)

20 ggplot(df, aes(x = freq , y = smoothed_spec)) +

21 geom_line() +

32

22 scale_x_continuous(limits = c(0, pi)) +

23 labs(

24 x = expression(lambda),

25 y = expression(hat(f)(lambda)),

26 title = ” S p e c t r a l Dens i ty Est imate ”
27) +

28 theme_minimal ()

29 # Figur e 4−11
30 weights <- c(1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/

15)

31 smoothed_spec <- stats:: filter(spec , filter=weights ,

sides =2)

32 df <- data.frame(freq = freq , smoothed_spec =

smoothed_spec)

33 ggplot(df, aes(x = freq , y = smoothed_spec)) +

34 geom_line() +

35 scale_x_continuous(limits = c(0, pi)) +

36 labs(

37 x = expression(lambda),

38 y = expression(hat(f)(lambda)),

39 title = ” S p e c t r a l Dens i ty Est imate ”
40) +

41 theme_minimal ()

R code Exa 4.4.1 Spectral density of AR 2

1 # Page 112
2 library(ggplot2)

3 D_q <- function(lambda , q) {

4 if (lambda == 0) {

5 return (1)

6 } else {

7 return(sin((q + 0.5) * lambda) / ((2 * q + 1) *

sin(lambda / 2)))

8 }

33

9 }

10 q <- 10

11 lambda <- seq(0, pi, length.out = 1000)

12 D_10 <- sapply(lambda , D_q, q = q)

13 df <- data.frame(lambda = lambda , D_10 = D_10)

14 ggplot(df, aes(x = lambda , y = D_10)) +

15 geom_line() +

16 labs(

17 x = expression(lambda),

18 y = expression(D[10](lambda)),

19 title = ” T r a n s f e r Funct ion D[1 0] (lambda) f o r
S imple Moving−Average F i l t e r ”

20) +

21 theme_minimal ()

22 # Figur e 4−13
23 ideal_low_pass <- function(lambda , wc) {

24 ifelse(abs(lambda) <= wc, 1, 0)

25 }

26 wc <- pi / 4

27 q_values <- c(2, 10)

28 ideal_values <- ideal_low_pass(lambda , wc)

29 D_2_values <- sapply(lambda , D_q, q = 2)

30 D_10_values <- sapply(lambda , D_q, q = 10)

31 df <- data.frame(

32 lambda = rep(lambda , 3),

33 value = c(ideal_values , D_2_values , D_10_values),

34 type = factor(rep(c(” I d e a l ”, ”q = 2”, ”q = 10 ”),
each = length(lambda)))

35)

36 ggplot(df, aes(x = lambda , y = value , color = type))

+

37 geom_line() +

38 labs(

39 x = expression(lambda),

40 y = ” T r a n s f e r Funct ion ”,
41 title = ” T r a n s f e r Func t i on s : I d e a l Low−Pass

F i l t e r and Truncated F o u r i e r Approx imat ions ”
42) +

34

43 scale_color_manual(values = c(” I d e a l ” = ” b l a c k ”, ”
q = 2” = ” b lue ”, ”q = 10 ” = ” red ”)) +

44 theme_minimal () +

45 theme(legend.title = element_blank ())

35

Chapter 5

Modeling and Forecasting with
ARMA Processes

R code Exa 5.1.1 The Dow Jones Utilities Index

1 # Page No . 126
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 ar_model <- ar(dowjones_diff , order.max = 1, method

= ” yule−walke r ”)
10 sample_autocovariance <- acf(dowjones_diff , plot =

FALSE , type = ’ c o v a r i a n c e ’)
11 ar_coefficient <- ar_model$ar

12 par(mfrow = c(1, 2))

13 acf(dowjones_diff , main = ”ACF o f D i f f e r e n c e d S e r i e s
”)

14 pacf(dowjones_diff , main = ”PACF o f D i f f e r e n c e d
S e r i e s ”)

36

15 print(sample_autocovariance)

16 print(ar_coefficient)

R code Exa 5.1.2 MA 1 model forecasting

1 # Page No . 128
2 library(forecast)

3 library(tseries)

4 oshorts <- read.csv(”OSHORTS.TSM”, header = FALSE)

5 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
6 ots <- ts(oshorts$overshorts)

7 rho_1 <- acf(ots , plot=FALSE)$acf [2]

8 gamma <- acf(ots , plot = FALSE , type = ’ c o v a r i a n c e ’)
$acf[1]

9

10 if (abs(rho_1) > 0.5) {

11 theta_hat <- rho_1/abs(rho_1)

12 } else {

13 theta_hat <- (rho_1) * sqrt(4 * rho_1^2 - 4 * rho_

1) / (2 * abs(rho_1))

14 }

15 sigma2_hat <- gamma / (1 + theta_hat^2)

16 cat(” Est imated t h e t a _hat : ”, theta_hat , ”\n”)
17 cat(” Est imated s igma2 _hat : ”, sigma2_hat , ”\n”)

R code Exa 5.1.3 Dow jones utilities index using burg model

1 # Page No . 131
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

37

6 colnames(dow)[1] <- ” j o n e s ”
7 time_series <- ts(dow$jones)

8 Y_t <- diff(time_series , lag=1)

9 ar_order <- 1

10 burg_model <- burg(Y_t, ar_order)

11 ar_param <- burg_model$phi

12 stderror <- (burg_model$se.phi)

13 aicc <- burg_model$aicc

14 cat(”AR(1) model parameter : ”, ar_param , ”\n”)
15 cat(”AICC : ”, aicc , ”\n”)
16 find_conf <- function(param , stderr){

17 low <- param - (stderr*1.96)

18 high <- param + (stderr*1.96)

19 x <- c(low , high)

20 return (x)

21 }

22 confs <- find_conf(ar_param ,stderror)

23 cat(”95% Con f id ence Bounds : ”,confs)

R code Exa 5.1.4 Modeling on Lake data

1 # Page No . 131
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 huron <- read.csv(”LAKE.TSM”, header=FALSE)

6 colnames(huron)[1] <- ’ water ’
7 time_series <- ts(huron$water)

8 Y_t <- time_series

9 X_t <- Y_t - 9.0041

10 par(mfrow = c(1, 2))

11 # Figur e 5−3
12 acf(X_t, main = ”ACF”)
13 # Figur e 5−4

38

14 pacf(X_t, main = ”PACF”)
15 ar_order <-2

16

17 # Burg model
18 burg_model <- burg(X_t, ar_order)

19 arb_param <- burg_model$phi

20 stderr <- (burg_model$se.phi)

21 aicc <- burg_model$aicc

22 conf_lower <- arb_param - (stderr*1.96)

23 conf_upper <- arb_param + (stderr*1.96)

24 print(” For burg model : ”)
25 cat(”AR(1) model parameter : ”, arb_param , ”\n”)
26 cat(”AICC : ”, aicc , ”\n”)
27 cat(”95% Con f id ence Bounds : (”, conf_lower , ” , ”,

conf_upper , ”) \n”)
28

29 # Yule wa lke r model
30 yw_model <- yw(X_t, ar_order)

31 ary_param <- yw_model$phi

32 stderr <- (yw_model$se.phi)

33 aicc <- yw_model$aicc

34 conf_lower <- ary_param - (stderr*1.96)

35 conf_upper <- ary_param + (stderr*1.96)

36 print(” For y u l e wa lke r model : ”)
37 cat(”AR(1) model parameter : ”, ary_param , ”\n”)
38 cat(”AICC : ”, aicc , ”\n”)
39 cat(”95% Con f id ence Bounds : (”, conf_lower , ” , ”,

conf_upper , ”) \n”)

R code Exa 5.1.5 Estimations on Dow jones utilities index

1 # Page No . 134
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

39

4 library(itsmr)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 time_series <- ts(dow$jones)

8 Y_t <- diff(time_series , lag=1)

9 ma_order <- 2

10 inno_model <- ia(Y_t, ma_order , m = 17)

11 ma_param <- inno_model$theta

12 stderr <- (inno_model$se.theta)

13 aicc <- inno_model$aicc

14 stddev_1 <- ma_param [1]/(1.96*stderr [1])

15 stddev_2 <- ma_param [2]/(1.96*stderr [2])

16 wnvar <- inno_model$sigma2

17 cat(”MA(2) model parameter : ”, ma_param , ”\n”)
18 cat(”AICC : ”, aicc , ”\n”)
19 print(” Standard d e v i a t i o n s f o r f i r s t two MA

paramete r s : ”)
20 print(stddev_1);print(stddev_2)

21 cat(” White n o i s e v a r i a n c e : ”, wnvar)

R code Exa 5.1.6 Estimations on Lake data

1 # Page No . 137
2 library(itsmr)

3 library(tseries)

4 huron <- read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(huron)[1] <- ’ water ’
6 Y_t <- ts(huron$water)

7 X_t <- Y_t - mean(Y_t)

8 arma_model <- arma(X_t, p=1, q=1)

9 ma_param <- arma_model$theta

10 ar_param <- arma_model$phi

11 stderr_phi <- arma_model$se.phi

12 stderr_theta <- arma_model$se.theta

13 aicc <- arma_model$aicc

40

14 stddev_phi <- ar_param/(1.96*stderr_phi)

15 stddev_theta <- ma_param/(1.96*stderr_theta)

16 cat(” Est imated AR c o e f f i c i e n t : ”, ar_param , ”\n”)
17 cat(” Est imated MA c o e f f i c i e n t : ”, ma_param , ”\n”)
18 cat(”AICC : ”, aicc , ”\n”)
19 cat(” Standard d e v i a t i o n s : ”, stddev_phi , ” ”,

stddev_theta)

20 find_conf <- function(param , stderr){

21 low <- param - (stderr*1.96)

22 high <- param + (stderr*1.96)

23 x <- c(low , high)

24 return (x)

25 }

26 conf_phi <- find_conf(ar_param , stderr_phi)

27 cat(”95% Con f id ence Bounds f o r ph i : ”, conf_phi)

28 conf_theta <- find_conf(ma_param , stderr_theta)

29 cat(”95% Con f id ence Bounds f o r t h e t a : ”, conf_theta)

R code Exa 5.1.7 Lake data analysis using Hannan algorithm

1 # Page No . 138
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 huron <- read.csv(”LAKE.TSM”, header = FALSE)

6 colnames(huron)[1] <- ’ water ’
7 time_series <- ts(huron$water)

8 Y_t <- time_series

9 X_t <- Y_t - mean(Y_t)

10 p <- 1

11 q <- 1

12 h_model <- hannan(X_t, p, q)

13 ar_param <- h_model$phi

14 ma_param <- h_model$theta

41

15 aicc <- h_model$aicc

16 stderr_phi <- h_model$se.phi

17 stderr_theta <- h_model$se.theta

18 stddev_phi <- ar_param/(1.96*stderr_phi)

19 stddev_theta <- ma_param/(1.96*stderr_theta)

20 cat(” Est imated AR c o e f f i c i e n t : ”, ar_param , ”\n”)
21 cat(” Est imated MA c o e f f i c i e n t : ”, ma_param , ”\n”)
22 cat(”AICC : ”, aicc , ”\n”)
23 cat(” Standard d e v i a t i o n s , ph i and t h e t a

r e s p e c t i v e l y : ”, stddev_phi , stddev_theta)

24 find_conf <- function(param , stderr){

25 low <- param - (stderr*1.96)

26 high <- param + (stderr*1.96)

27 x <- c(low , high)

28 return (x)

29 }

30 confs_phi <- find_conf(ar_param ,stderr_phi)

31 cat(”95% Con f id ence Bounds f o r ph i : ”,confs_phi)
32 confs_theta <- find_conf(ma_param ,stderr_theta)

33 cat(”95% Con f id ence Bounds f o r t h e t a : ”,confs_theta)

R code Exa 5.2.4 Burg and yule walker model comparison

1 # Page No . 143
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 dow_mean_diff <- dowjones_diff - mean(dowjones_diff)

10 p <- 1; q <- 0; n <- length(dow_mean_diff)

11 ywmodel <- yw(dow_mean_diff , p)

42

12 bmodel <- burg(dow_mean_diff , p)

13 model <- autofit(dow_mean_diff , p=0:5, q=0:5)

14 aicc <- model$aicc

15 aicc_yw <- ywmodel$aicc

16 aicc_b <- bmodel$aicc

17 LL_yw <- aicc_yw - (2*(p+q+1)*n/(n-p-q-2))

18 LL_b <- aicc_b - (2*(p+q+1)*n/(n-p-q-2))

19 LL <- aicc - (2*(p+q+1)*n/(n-p-q-2))

20 b_param <- bmodel$phi

21 stderr <- model$se.phi

22 ar_param <- model$phi

23 find_conf <- function(param , stderr){

24 low <- param - (stderr*1.96)

25 high <- param + (stderr*1.96)

26 x <- c(low , high)

27 return (x)

28 }

29 confs <- find_conf(ar_param ,stderr)

30

31 cat(”Minimum AICC : ”,aicc ,”\n”)
32 cat(” Standard e r r o r : ”,stderr ,”\n”)
33 cat(”95% Con f id ence Bounds : ”,confs)
34 cat(”Log l i k e l i h o o d f o r a u t o f i t : ”,LL ,”\n”)
35 cat(” Parameters i n burg model : ”,b_param ,”\n”)
36 cat(”Log l i k e l i h o o d f o r y u l e wa lke r : ”,LL_yw,”\n”)
37 cat(”Log l i k e l i h o o d f o r burg : ”,LL_b,”\n”)

R code Exa 5.2.5 Autofit on Lake data

1 # Page No . 144
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 hudson <- read.csv(”LAKE.TSM”, header = FALSE)

43

6 colnames(hudson)[1] <- ” l e v e l ”
7 Y_t <- ts(hudson$level)

8 X_t <- Y_t - mean(Y_t)

9 arma_model <- autofit(X_t, p=0:5, q=0:5)

10 aicc <- arma_model$aicc

11 ar_param <- arma_model$phi

12 ma_param <- arma_model$theta

13 stderr_phi <- arma_model$se.phi

14 stderr_theta <- arma_model$se.theta

15 stddev_phi <- ar_param/(1.96*stderr_phi)

16 stddev_theta <- ma_param/(1.96*stderr_theta)

17 find_conf <- function(param , stderr){

18 low <- param - (stderr*1.96)

19 high <- param + (stderr*1.96)

20 x <- c(low , high)

21 return (x)

22 }

23 confs_phi <- find_conf(ar_param ,stderr_phi)

24 confs_theta <- find_conf(ma_param ,stderr_theta)

25 cat(”AICC : ”,aicc ,”\n”)
26 cat(”AR Parameter : ”,ar_param ,”\n”)
27 cat(”MA Parameter ”,ma_param ,”\n”)
28 cat(” Standard d e v i a t i o n s f o r ph i and t h e t a : ”,stddev_

phi ,stddev_theta ,”\n”)
29 print(”95% Con f id ence i n t e r v a l s : ”)
30 cat(” f o r ph i : ”,confs_phi ,”\n”)
31 cat(” f o r t h e t a : ”,confs_theta ,”\n”)

R code Exa 5.4.1 Forecasts on overshorts data

1 # Page No . 147
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to randomiza t i on
4 library(tseries)

44

5 library(forecast)

6 oshorts <- read.csv(”OSHORTS.TSM”,header = FALSE)

7 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
8 Xts <- ts(oshorts$overshorts)

9 best_model <- auto.arima(Xts ,max.order = 1, stepwise

= FALSE , approximation = FALSE)

10 best_model$coef

11 ma_model <- arima(Xts , order = c(0, 0, 1))

12 predictions <- predict(ma_model ,7)

13 mean_Xts <- mean(Xts)

14 predicted_values <- as.numeric(predictions$pred)

15 mse <- sqrt(mean((Xts - mean_Xts)^2))

16 cat(” P r e d i c t e d Values : \ n”)
17 print(predicted_values)

18 cat(”Mean Squared Er ro r (MSE) : \ n”)
19 print(mse)

R code Exa 5.5.1 FPE based selection of an AR model for Lake data

1 # Page No . 150
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 huron <- read.csv(”LAKE.TSM”, header = FALSE)

6 colnames(huron)[1] <- ’ water ’
7 Y_t <- ts(huron$water)

8 X_t <- Y_t - mean(Y_t)

9 ar_orders <- 1:10

10 fpe_values <- numeric(length(ar_orders))

11 sigma_squared_values <- numeric(length(ar_orders))

12 for (p in ar_orders) {

13 ar_model <- arma(X_t, p=p, q=0)

14 n <- length(X_t)

15 sigma_squared <- ar_model$sigma2

45

16 fpe_values[p] <- (n + p) / (n - p) * sigma_squared

17 sigma_squared_values[p] <- sigma_squared

18 }

19 for (p in ar_orders) {

20 cat(” Order ”, p, ”− FPE : ”, fpe_values[p], ” Sigma ˆ 2 :
”, sigma_squared_values[p], ”\n”)

21 }

R code Exa 5.5.2 AICC based model selection

1 # Page No . 153
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 huron <- read.csv(”LAKE.TSM”, header=FALSE)

6 colnames(huron)[1] <- ’ water ’
7 Y_t <- ts(huron$water)

8 X_t <- Y_t - mean(Y_t)

9 p <- 1 ; q <- 1

10 best_model2 <- arma(X_t, p=p, q=q)

11 cat(” Best ARIMA model based on AICC : \ n”)
12 print(best_model2$aicc)

13 p <- 2; q <- 0

14 best_model1 <- arma(X_t, p=p, q=q)

15 cat(” Best ARIMA model based on AICC : \ n”)
16 print(best_model1$aicc)

46

Chapter 6

Nonstationary and Seasonal
time series models

R code Exa 6.1.1 ARIMA 1 1 0 Process

1 # Page No . 159
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 library(ggplot2)

5 phi <- 0.8

6 sigma2 <- 1

7 n <- 200

8 set.seed (123)

9 Xt <- arima.sim(model = list(order = c(1,1,0), ar =

phi), n = n, sd = sqrt(sigma2))

10 # Figur e 6−1
11 autoplot(Xt) +

12 ggtitle(”ARIMA(1 , 1 , 0) ”) +

13 geom_point()+

14 xlab(”Time”) +

15 ylab(”Xt”) +

16 theme_minimal ()

17 # Figur e 6−2
18 acf_plot <- ggAcf(Xt) +

47

19 ggtitle(” Sample ACF”) +

20 theme_minimal ()

21 print(acf_plot)

22 # Figur e 6−3
23 pacf(Xt, main =” Sample PACF”)
24 # Figur e 6−4
25 Yt <- diff(Xt)

26 plot(Yt)

R code Exa 6.2.1 Burg model on Australian wine data

1 # Page no . 168
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s
4 library(forecast)

5 library(tseries)

6 library(itsmr)

7 wine_data <- read.csv(”WINE.TSM”, header = FALSE)

8 colnames(wine_data)[1] <- ’ S a l e s ’
9 winedata <- ts(wine_data$Sales)

10 M <- c(” s e a s o n ” ,12, ” t r end ” ,1)
11 newwine <- Resid(winedata ,M)

12 plot(newwine , type= ’ l ’)
13 M <- c(” l o g ”,” d i f f ” ,12)
14 newwine <- Resid(winedata ,M)

15 plot(newwine , type= ’ l ’)
16 acf(newwine)

17 pacf(newwine)

18 Wts <- newwine -mean(newwine)

19 burg_model <- burg(Wts , p=12)

20 print(burg_model)

21 arma_model <- autofit(Wts , p=0:15, q=0)

22 print(arma_model)

48

R code Exa 6.2.2 Autofit for minimum AICC model

1 # Page No . 169
2 library(tseries)

3 library(itsmr)

4 huron <- read.csv(”LAKE.TSM”, header=FALSE)

5 colnames(huron)[1] <- ’ water ’
6 Y_t <- ts(huron$water)

7 X_t <- Y_t - mean(Y_t)

8 model <- autofit(X_t,p=0:2,q=0:2)

9 cat(” Phi : \ n”, model$phi)

10 cat(” Theta : \ n”, model$theta)

11 cat(” Var i ance : \ n”, model$sigma2)

12 cat(”AICC : \ n”, model$aicc)

R code Exa 6.3.1 Test statistic on simulated data

1 # Page no . 171
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 library(tseries)

5 phi <- 0.8

6 sigma2 <- 1

7 n <- 200

8 set.seed (123)

9 X0 <- 0

10 Xt <- arima.sim(model = list(order = c(1,1,0), ar =

phi), n = n, sd = sigma2)

11 Xt <- c(X0, Xt)

12 dXt <- diff(Xt)

13 Xt_lag1 <- lag(Xt, 1)

14 dXt_lag1 <- lag(dXt , 1)

49

15 dXt_lag2 <- lag(dXt , 2)

16 valid_indices <- 4:200

17 reg_data <- data.frame(

18 dXt = dXt[valid_indices - 1],

19 Xt_lag1 = Xt[valid_indices - 1],

20 dXt_lag1 = dXt[valid_indices - 2],

21 dXt_lag2 = dXt[valid_indices - 3]

22)

23 reg_model <- lm(dXt ~ Xt_lag1 + dXt_lag1 + dXt_lag2 ,

data = reg_data)

24 coeff_Xt_lag1 <- summary(reg_model)$coefficients[”Xt
_ l a g 1 ”, ” Est imate ”]

25 se_Xt_lag1 <- summary(reg_model)$coefficients[”Xt_
l a g 1 ”, ” Std . Er ro r ”]

26 test_statistic <- coeff_Xt_lag1 / se_Xt_lag1

27 cat(” Test s t a t i s t i c f o r u n i t r o o t : ”, test_statistic ,

”\n”)

R code Exa 6.3.2 Model parameters for overshorts data

1 # Page No . 173
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(forecast)

5 oshorts= read.csv(”OSHORTS.TSM”, header = FALSE)

6 colnames(oshorts)[1] <- ’ o v e r s h o r t s ’
7 Xts <- ts(oshorts$overshorts)

8 Y_t <- Xts + 4.035

9 best_model <- auto.arima(Y_t, stepwise = FALSE ,

approximation = FALSE)

10 print(best_model$coef)

11 print ((-2)*logLik(best_model))

50

R code Exa 6.4.1 ARIMA 1 1 0 model on Dow jones utilities index

1 # Page No . 176
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 M = c(” d i f f ”, 1)

10 dowj <- Resid(dowjones ,M)

11 dowj <- dowj - mean(dowj)

12 p <- 1; q <- 0;

13 bmodel <- burg(dowj , p)

14 cat(”Mean squared e r r o r ”,bmodel$sigma2)
15 print(bmodel)

R code Exa 6.5.2 ACF of seasonal MA model

1 # Page no . 178
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 set.seed (123)

5 n <- 500

6 U_t <- rnorm(n)

7 lag <- 12

8 X_t <- U_t

9 X_t[(lag + 1):n] <- U_t[(lag + 1):n] - 0.4 * U_t[1:(

n - lag)]

10 acf(X_t, main=”ACF”)

51

R code Exa 6.5.3 ACF of seasonal AR model

1 # Page no . 179
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 set.seed (123)

5 n <- 500

6 U_t <- rnorm(n)

7 X_t <- numeric(n)

8 X_t[1:12] <- U_t[1:12]

9 for (t in (12 + 1):n) {

10 X_t[t] <- U_t[t] + 0.7 * X_t[t - 12]

11 }

12 acf(X_t, main=”ACF”)

R code Exa 6.5.4 ACF of monthly accidental deaths data

1 # Page no . 180
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s .
4 library(forecast)

5 library(astsa)

6 library(itsmr)

7 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

8 colnames(deaths)[1] <- ” dea th s ”
9 deaths$months=seq(as.Date(”1973−01−01”), as.Date(”

1978−12−01”),by= ’ month ’)
10 diff1 <- diff(deaths$deaths , lag = 12)

11 Yt <- ts(diff(diff1),frequency = 12)

12 # Figur e 6−17

52

13 acf(Yt , main=”ACF”)
14 best_model <- auto.arima(Yt , seasonal=TRUE , stepwise

= FALSE , approximation = FALSE)

15 print(best_model)

16 sarima_model <- Arima(Yt, order = c(0, 1, 1),

seasonal = c(0, 1, 1))

17 model_params <- sarima_model$coef

18 print(model_params)

R code Exa 6.5.5 Forecasting monthly accidental deaths

1 # Page no . 180
2 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s .
3 library(forecast)

4 library(itsmr)

5 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

6 dts <- ts(deaths ,frequency = 12)

7 dts_diff_12 <- diff(dts , lag = 12)

8 dts_diff_12_1 <- diff(dts_diff_12, lag = 1)

9 dts_mean_corrected <- dts_diff_12_1 - mean(dts_diff_

12_1)

10 fit <- arma(dts_mean_corrected ,p=0,q=13)

11 M <- c(” d i f f ” ,12,” d i f f ” ,1)
12 forecast_values <- forecast(dts ,M,fit ,h = 6)

R code Exa 6.6.1 GLS based Model parameter estimation

1 # Page no . 187
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(nlme)

5 oshorts= read.csv(”OSHORTS.TSM”, header = FALSE)

53

6 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
7 oshorts$time <- seq(1,length(oshorts$overshorts))

8 ots <- ts(oshorts$overshorts)

9 ots <- ots -mean(ots)

10 oshorts$overshorts <- oshorts$overshorts -mean(

oshorts$overshorts)

11 a <- autofit(ots , p=0, q=1)

12 print(a$theta)

13 cat(”OLS beta : ”,mean(oshorts$overshorts))
14 acv <- acf(oshorts$overshorts ,type = ’ c o v a r i a n c e ’ ,

plot=FALSE)

15 cat(” Es t imato r f o r beta : ”,acv$acf [1]/length(ots))
16 model_formula <- overshorts ~ time

17 gls_model <- gls(model_formula , data = oshorts)

18 summary(gls_model)

R code Exa 6.6.2 Model parameters estimation for Lake data

1 # Page no . 189
2 library(forecast)

3 library(nlme)

4 hudson <- read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(hudson)[1] <- ’ l e v e l ’
6 hudson$t <- seq(1, length(hudson$level))

7 ols_model <- lm(hudson$level ~ hudson$t)

8 ols_residuals <- residuals(ols_model)

9 beta1_hat <- coef(ols_model)[1]

10 cat(”OLS e s t i m a t e o f be ta1 : ”, beta1_hat , ”\n”)
11 ar2_model <- Arima(ols_residuals , order=c(2,0,0))

12 phi1_hat <- coef(ar2_model)[” ar1 ”]
13 phi2_hat <- coef(ar2_model)[” ar2 ”]
14 sigma2_hat <- ar2_model$sigma2

15 cat(” ph i1 : ”,phi1_hat)
16 cat(” ph i2 : ”,phi2_hat)
17 cat(” s td . dev . : ”,sigma2_hat)

54

18 glsEstimate () <- gls(lm(level~t),data = hudson)

R code Exa 6.6.3 Seat belt legislation

1 # Page no . 189
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(nlme)

5 library(ggplot2)

6 seat <- read.csv(”SBL .TSM”, header = FALSE)

7 gt <- read.csv(”SBLDIN .TSM”, header = FALSE)

8 colnames(gt)[1] <- ’Y ’
9 colnames(seat)[1] <- ” acc ”

10 seat$Years <- seq(as.Date(”1975−01−01”), as.Date(”
1984−12−01”), by = ”month”)

11 ggplot(seat , aes(x = Years , y = acc)) +

12 geom_point(shape = 15, size = 1) +

13 geom_line() +

14 labs(title = ”Road i n j u r i e s (Jan 1975 − Dec 1984) ”
,

15 x = ”Months”,
16 y = ” I n j u r i e s ”) +

17 theme_minimal ()

18 # P r e d i c t i o n may d i f f e r due to s p e c i f i c s o f t w a r e
methods

19 Yt <- ts(seat$acc)

20 Xt <- Yt -diff(Yt,lag = 12)

21 data <- data.frame(X = Xt,Y = gt)

22 gls_model <- gls(X~Y, data = data)

23 fitted_values <- fitted(gls_model)

24 seat <-seat[-c(1:12) ,]

25 seat$fit <- fitted_values

26 plot(seat$Years ,seat$acc , main = ” O r i g i n a l Data and
F i t t e d GLS Line ”,

55

27 xlab = ”Time”, ylab = ” Value ”, type = ”o−”)
28 lines(seat$Years , fitted_values , col = ” red ”, lwd =

2)

56

Chapter 7

Time Series Models for
Financial Data

R code Exa 7.2.1 ARCH 1 Series

1 # Page no . 199
2 # Answer may vary due to randomiza t i on
3 alpha0 <- 1

4 alpha1 <- 0.5

5 n <- 1000

6 set.seed (123)

7 epsilon <- rnorm(n)

8 sigma2 <- numeric(n)

9 y <- numeric(n)

10 for (t in 2:n) {

11 sigma2[t] <- alpha0 + alpha1 * y[t-1]^2

12 y[t] <- sqrt(sigma2[t]) * epsilon[t]

13 }

14 plot(y, type = ” l ”, main = ” S imula ted ARCH(1)
P r o c e s s ”, xlab = ”Time”, ylab = ” Value ”)

15 acf(y)

57

R code Exa 7.2.2 Fitting GARCH models to stock data

1 # Page No . 201
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 library(rugarch)

6 E1032 <- read.csv(” E1032 .TSM”)
7 char_array <- E1032 [39:193 ,]

8 matches <- gregexpr(” −? [0−9 .]+(? :\\ s * [Ee
] [+−]? [0−9]+) ? ”, char_array)

9 stock <- ts(as.numeric(unlist(regmatches(char_array ,

matches))))

10 garch_spec <- ugarchspec(mean.model = list(armaOrder

= c(0,0)),

11 variance.model = list(model

= ”sGARCH”, garchOrder

= c(1,1)))

12 garch_fit <- ugarchfit(data = stock , spec = garch_

spec)

13 sigma <- sigma(garch_fit)

14 par(mfrow=c(2,1))

15 plot(stock ,type = ’ l ’ , col = ’ b l u e ’ ,ylab = ’
p e r c e n t a g e r e t u r n s ’)

16 plot(sigma , type = ’ l ’ , col = ’ r ed ’ , ylab = ’
V o l a t i l i t y ’)

R code Exa 7.2.3 Fitting ARMA Models Driven by GARCH Noise

1 # Page No . 203
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 # Answer may vary due to s o f t w a r e s p e c i f i c a t i o n s

58

5 library(forecast)

6 library(tseries)

7 library(rugarch)

8 sunspot <- read.csv(”SUNSPOTS .TSM”)
9 colnames(sunspot)[1] <- ” s p o t s ”
10 sunspots <- ts(sunspot$spots)

11 sunspots_mean_corrected <- sunspots - mean(sunspots ,

na.rm = TRUE)

12 fit_arima <- Arima(sunspots_mean_corrected , order =

c(4,0,3))

13 print(fit_arima)

14 residuals_arima <- fit_arima$residuals

15 p <- 1

16 q <- 1

17 spec <- ugarchspec(variance.model = list(model = ”
sGARCH”, garchOrder = c(p, q)),

18 mean.model = list(armaOrder = c

(4, 3), include.mean = TRUE),

19 distribution.model = ”norm”)
20 fit_garch <- ugarchfit(spec = spec , data = residuals

_arima)

21 print(fit_garch)

22 n <- as.numeric(length(sunspots_mean_corrected))

23 aicc <- (((-2)*(fit_garch@fit$LLH))*(n/(n-p)))+ (((p

+q+2)*(2*n))/(n-p-q-2))

24 print(paste(”AICC v a l u e f o r the GARCH model : ”, aicc)

)

25 print(” Parameters o f the GARCH(1 , 1) model : ”)
26 print(coef(fit_garch))

R code Exa 7.5.1 Brownian motion

1 # Page no . 213
2 # Answer may vary due to randomiza t i on
3 T <- 10; n <- 1000; dt <- T / n

59

4 time_points <- seq(0, T, by = dt)

5 set.seed (123)

6 increments <- rnorm(n, mean = 0, sd = sqrt(dt))

7 B_t <- c(0, cumsum(increments))

8 plot(time_points , B_t, type = ” l ”,
9 main = ” Standard Brownian Motion B(t) ”,
10 xlab = ”Time”, ylab = ”B(t) ”,
11 col = ” b lue ”, lwd = 2)

R code Exa 7.5.2 Poisson process

1 # Page no . 214
2 lambda <- 5

3 T <- 10

4 set.seed (123)

5 jump_times <- cumsum(rexp (100, rate = lambda))

6 jump_times <- jump_times[jump_times <= T]

7 N_t <- seq_along(jump_times)

8 jump_times <- c(0, jump_times)

9 N_t <- c(0, N_t)

10 plot(jump_times , N_t, type = ” s ”,
11 main = ” Po i s s on P r o c e s s N(t) ”,
12 xlab = ”Time”, ylab = ”N(t) ”,
13 col = ” b lue ”, lwd = 2)

R code Exa 7.5.3 Compound Poisson Process

1 # Page no . 214
2 lambda <- 5; T <- 10; mu <- 0; sigma <- 1

3 set.seed (123)

4 jump_times <- cumsum(rexp (100, rate = lambda))

5 jump_times <- jump_times[jump_times <= T]

60

6 jump_sizes <- rnorm(length(jump_times), mean = mu,

sd = sigma)

7 X_t <- cumsum(jump_sizes)

8 jump_times <- c(0, jump_times)

9 X_t <- c(0, X_t)

10 plot(jump_times , X_t, type = ” s ”,
11 main = ”Compound Po i s s on P r o c e s s X(t) ”,
12 xlab = ”Time”, ylab = ”X(t) ”,
13 col = ” b lue ”, lwd = 2)

61

Chapter 8

Multivariate Time Series

R code Exa 8.1.1 Dow Jones and All Ordinaries Indices

1 # Page No . 229
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 dow <- read.csv(”DJAO2 .TSM”, header = FALSE)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 colnames(pc)[1] <- ” s t o c k s ”
8 char_array <- dow[,1]

9 matches <- gregexpr(”\\b\\d {3 ,}\\b”, char_array)

10 stock <- as.numeric(unlist(regmatches(char_array ,

matches)))

11 dowjones <- ts(stock[c(TRUE , FALSE)])

12 Aus <- ts(stock[c(FALSE , TRUE)])

13 index <- seq_along(dowjones)

14 plot(index , dowjones , type = ’ l ’ , col = ’ b l u e ’ , lwd

= 2, ylim = range(c(dowjones ,1000)),

15 xlab = ’ Index ’ , ylab = ’ Va lues ’ , main = ’Dow
j o n e s and A u s t r a l i a n o r d i n a r y ’)

16 lines(index , Aus , col = ’ r ed ’ , lwd = 2)

17

62

18 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

19 dowjones1 <- ts(as.numeric(pcs$dow))

20 Aus1 <- ts(as.numeric(pcs$aus))

21 acf(dowjones1 , main = ” S e r i e s 1”)
22 acf(Aus1 , main = ” S e r i e s 2”)
23 ccf1 <- ccf(dowjones1 , Aus1 ,plot = FALSE)

24 positive_lag1 <- ccf1$lag >= 0

25 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1

], type = ”h”,
26 main = ” S e r i e s 1 * S e r i e s 2”,
27 xlab = ”Lag”, ylab = ”CCF”)
28 abline(h = 0)

29 ccf2 <- ccf(Aus1 ,dowjones1 ,plot = FALSE)

30 positive_lag2 <- ccf2$lag >= 0

31 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
32 main = ” S e r i e s 2 * S e r i e s 1”,
33 xlab = ”Lag”, ylab = ”CCF”)
34 abline(h = 0)

35 plot(lag(dowjones1 , -1), Aus1 , main=” S c a t t e r p l o t ”,
36 xlab=” Lagged TS1”, ylab=”TS2”, pch =19)

R code Exa 8.1.2 Sales with a leading indicator

1 # Page No . 230
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 sales <- read.delim(”SALES .TSM”, header = FALSE)

6 leads <- read.delim(”LEAD.TSM”, header = FALSE)

7 colnames(sales)[1] <- ” s a l e ”
8 colnames(leads)[1] <- ” l e a d ”
9 ls2 <- cbind(sales , leads)

63

10 lst <- ts(ls2)

11 lst <- diff(lst)

12 par(mfrow = c(2, 2))

13 acf(lst[, 2], main = ” S e r i e s 1”)
14 acf(lst[, 1], main = ” S e r i e s 2”)
15 ccf1 <- ccf(lst[, 1], lst[, 2],plot = FALSE)

16 positive_lag1 <- ccf1$lag >= 0

17 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1

], type = ”h”,
18 main = ” S e r i e s 2 * S e r i e s 1”,
19 xlab = ”Lag”, ylab = ”CCF”)
20 abline(h = 0)

21 ccf2 <- ccf(lst[,2],lst[,1],plot = FALSE)

22 positive_lag2 <- ccf2$lag >= 0

23 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
24 main = ” S e r i e s 1 * S e r i e s 2”,
25 xlab = ”Lag”, ylab = ”CCF”)
26 abline(h = 0)

R code Exa 8.3.1 Sample correlations

1 # Page No . 239
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 E731 <- read.delim(”E731A .TSM”, header=FALSE)

6 Ets <- ts(E731)

7 par(mfrow = c(2, 2))

8 acf(Ets[, 2], main = ” S e r i e s 1”)
9 acf(Ets[, 1], main = ” S e r i e s 2”)

10 ccf1 <- ccf(Ets[, 1], Ets[, 2],plot = FALSE)

11 positive_lag1 <- ccf1$lag >= 0

12 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1

64

], type = ”h”,
13 main = ” S e r i e s 1 * S e r i e s 2”,
14 xlab = ”Lag”, ylab = ”CCF”)
15 abline(h = 0)

16 ccf2 <- ccf(Ets[,2],Ets[,1],plot = FALSE)

17 positive_lag2 <- ccf2$lag >= 0

18 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
19 main = ” S e r i e s 2 * S e r i e s 1”,
20 xlab = ”Lag”, ylab = ”CCF”)
21 abline(h = 0)

R code Exa 8.6.1 Multivariate models fitted on stock data

1 # Page No . 249
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary to u n s p e c i f i e d f u n c t i o n i n problem
4 library(tidyr)

5 library(vars)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

8 pcs$dow <- as.numeric(pcs$dow)

9 pcs$aus <- as.numeric(pcs$aus)

10 pcs_ts <- ts(pcs)

11 var_model <- VAR(pcs_ts,p=1,type = ” none ”)
12 summary(var_model)

R code Exa 8.6.2 Multivariate models fitted on sales data

1 # Page No . 249

65

2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(vars)

4 library(tidyr)

5 library(stringr)

6 library(dplyr)

7 ls <- read.csv(”LS2 .TSM”,header = FALSE)

8 colnames(ls)[1] <- ” l l ”
9 ls$ll <- trimws(ls$ll,which = ” l e f t ”)
10 lts <- separate(ls , col = ll , into = c(” l d ”, ” s a l e s ”

), sep = ”\\ s+”)
11 lts$ld <- as.numeric(lts$ld)

12 lts$sales <- as.numeric(lts$sales)

13 lts <- ts(lts)

14 ltds <- diff(lts , lag = 1)

15 lag <-VARselect(lts ,lag.max =10)

16 optimal <- lag$selection

17 estim <- VAR(ltds ,p=5,type = ” none ”)
18 summary(estim)

19 estim$varresult

R code Exa 8.6.3 VAR 1 model on stock data

1 # Page No . 251
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tidyr)

4 library(itsmr)

5 library(vars)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

8 pcs$dow <- as.numeric(pcs$dow)

9 pcs$aus <- as.numeric(pcs$aus)

10 pcs_ts <- ts(pcs)

66

11 var_model <- VAR(pcs_ts,p=1,type = ” none ”)
12 summary(var_model)

13 k <- 9

14 n <- length(pcs_ts)

15 log_likelihood <- LogLik(var_model)

16 aicc <- -2 * log_likelihood + 2 * k + (2 * k * (k +

1)) / (n - k - 1)

17 arm <- autofit(ts(pcs$aus),p=0:2,q=0)

18 print(arm)

67

Chapter 9

State Space Models

R code Exa 9.2.1 Random walk plus noise model

1 # Page no . 2 6 1
2 # Answer v a r i e s due to randomness
3 set.seed (46)

4 n <- 100

5 sigma_v <- 4

6 sigma_w <- 8

7 M <- cumsum(rnorm(n, mean = 0, sd = sqrt(sigma_w)))

8 W <- rnorm(n, mean = 0, sd = sqrt(sigma_v))

9 Y <- M + W

10 plot (1:n, M, type = ” l ”, col = ” b lue ”, xlab = ”Time”
, ylab = ” Value ”,

11 main = ”Random Walk Plus No i s e Model ”)
12 points (1:n, Y, pch = 15, col = ” red ”)
13 acf(diff(Y), lag.max = 20)

R code Exa 9.5.2 International airline passengers

1 # Page No . 278

68

2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Adequate data not p rov id ed i n example
4 library(ggplot2)

5 library(MASS)

6 library(KFAS)

7 airpass <- read.csv(”AIRPASS .TSM”, header = FALSE)

8 colnames(airpass)[1] <- ” pas s ”
9 ggplot(airpass , aes(x = seq(as.Date(”1949−01−01”),

as.Date(”1960−12−01”), by = ”month”), y = pass))

+

10 geom_point() +

11 geom_line() +

12 labs(title = ” Air p a s s e n g e r s (Jan 1949 − Dec 1960)
”,

13 x = ”Time”,
14 y = ” P a s s e n g e r s ”) +

15 theme_minimal ()

16 pass <- ts(airpass$pass)

R code Exa 9.8.3 Polio in the USA

1 # Page No . 292
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(dplyr)

5 polio <- read.csv(”POLIO .TSM”, header = FALSE)

6 colnames(polio)[1] <- ” po l ”
7 ggplot(polio , aes(x = seq(as.Date(”1970−01−01”), as.

Date(”1983−12−01”), by = ”month”), y = pol)) +

8 geom_point() +

9 geom_line() +

10 labs(title = ” P o l i o i n US (Jan 1970 − Dec 1983) ”,
11 x = ”Time”,

69

12 y = ” P o l i o c a s e s ”) +

13 theme_minimal ()

14 polio$Month <- 1: length(polio$pol)

15 polio <- polio %>%

16 mutate(

17 t = Month ,

18 u1 = 1,

19 u2 = t / 1000,

20 u3 = cos(2 * pi * t / 12),

21 u4 = sin(2 * pi * t / 12),

22 u5 = cos(2 * pi * t / 6),

23 u6 = sin(2 * pi * t / 6)

24)

25 model <- lm(pol ~ u1 + u2 + u3 + u4 + u5 + u6 , data

= polio)

26 polio$Trend <- fitted(model)

27 ggplot(polio , aes(x = Month)) +

28 geom_point(aes(y = pol , color = ” Actua l Cases ”)) +

29 geom_line(aes(y = Trend , color = ” Trend Est imate ”)
) +

30 labs(

31 title = ” Trend Est imate f o r Monthly U. S . P o l i o
Cases ”,

32 x = ”Month”,
33 y = ”Number o f Cases ”,
34 color = ” Legend ”
35) +

36 scale_color_manual(values = c(” Actua l Cases ” = ”
b lue ”, ” Trend Est imate ” = ” red ”)) +

37 theme_minimal ()

R code Exa 9.8.7 Goals Scored by England Against Scotland

1 # Page No . 299
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

70

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer v a r i e s due to i n a d e q u a t e data
4 library(ggplot2)

5 library(tidyr)

6 library(itsmr)

7 goals <- read.table(”GOALS.TSM”, header = FALSE)

8 colnames(goals)[1] <- ” g o a l ”
9 colnames(goals)[2] <-” Year ”
10 # Figur e 9−8
11 ggplot(goals , aes(x = Year , y = goal)) +

12 geom_point() +

13 geom_line(col= ’ b l u e ’) +

14 labs(title = ” Goals by England ”,
15 x = ” Years ”,
16 y = ” Goals ”) +

17 theme_minimal ()

18 # Figur e 9−9
19 ggplot(na.omit(goals), aes(x = factor(goal))) +

20 geom_bar() +

21 xlab(” Goals ”) +

22 ylab(”Count”) +

23 ggtitle(” Histogram o f Goals ”) +

24 theme_minimal ()

25

26 data <- na.omit(goals)

27 delta_hat <- 0.844

28 alpha_0 <- 0.154

29 lambda_0 <- delta_hat / (1 - delta_hat)

30 n <- nrow(data)

31 alpha <- numeric(n);lambda <- numeric(n);pred <-

numeric(n)

32 alpha [1] <- alpha_0

33 lambda [1] <- lambda_0

34 for (t in 2:n) {

35 alpha[t] <- alpha[t-1] + delta_hat * (data$goal[t

-1] - alpha[t-1])

36 lambda[t] <- lambda[t-1] + delta_hat * (1 - lambda

[t-1])

71

37 pred[t] <- alpha[t] / (1 + lambda[t])

38 }

39

40 ggplot(data.frame(Time = data$Year , pred = pred),

aes(x = Time , y = pred)) +

41 geom_line(color = ” b lue ”) +

42 geom_point(data = data , aes(x = Year , y = goal),

color = ” red ”) +

43 xlab(” Year ”) +

44 ylab(” Goals ”) +

45 ggtitle(”One−Step P r e d i c t o r s f o r Goals Data”) +

46 theme_minimal ()

72

Chapter 10

Forecasting Techniques

R code Exa 10.1.1 Predicted deaths by ARAR algorithm

1 # Page No . 312
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(forecast)

5 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

6 colnames(deaths)[1] <- ” death ”
7 dts <- ts(deaths$death)

8 arar_model <- arar(dts ,h=24,opt=2)

R code Exa 10.2.1 Holt Winters non seasonal forecast

1 # Page No . 316
2 # Answer may vary due to the na tu r e o f f o r e c a s t

f u n c t i o n .
3 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
4 library(forecast)

73

5 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

6 colnames(deaths)[1] <- ” death ”
7 dts <- ts(deaths$death , freq=12, start = 1973)

8 hw_model <- HoltWinters(dts , gamma = FALSE)

9 forecast_values <- forecast :: forecast(hw_model , n.

steps =2)

10 plot(forecast_values , main=” Holt−Winters F o r e c a s t ”,
xlab=”Time”, ylab=” Values ”)

11 lines(dts , col=” b lue ”)

R code Exa 10.3.1 Holt Winters seasonal forecast

1 # Page No . 316
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 deaths <- read.delim(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” death ”
6 dts <- ts(deaths$death , freq=12, start = 1973)

7 hw_model <- HoltWinters(dts)

8 forecast_values <- forecast :: forecast(hw_model , h

=24)

9 plot(forecast_values , main=” Holt−Winters F o r e c a s t ”,
xlab=”Time”, ylab=” Values ”)

10 lines(dts , col=” b lue ”)

74

Chapter 11

Further Topics

R code Exa 11.4.1 Annual Minimum Water Levels in the Nile

1 # Page No . 340
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 nile <- read.csv(”NILE .TSM”, header = FALSE)

5 colnames(nile)[1] <- ” water ”
6 plot(nile$water ,xlab=” t ime ”,ylab=” water l e v e l ”,main=

” N i l e r i v e r ”,type = ’ l ’)
7 acf(nile$water ,main=”ACF”)
8 best_model <- auto.arima(nile$water , stepwise =

FALSE , ic=” a i c c ”, approximation = FALSE)

9 print(best_model$aicc)

10 best_arfima <-arfima(nile$water ,model = best_model)

11 print(best_arfima$aicc)

75

	
	 Introduction
	 Stationary Processes
	 ARMA Models
	 Spectral Analysis
	 Modeling and Forecasting with ARMA Processes
	 Nonstationary and Seasonal time series models
	 Time Series Models for Financial Data
	 Multivariate Time Series
	 State Space Models
	 Forecasting Techniques
	Further Topics

