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Chapter 1

Introduction

R code Exa 1.1.1 Australian wine sales

# Page No. 2
# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip
library (ggplot2)
wine_data <- read.delim("WINE.TSM”, header = FALSE)
colnames (wine_data) [1]<- " Sales”
ggplot (wine_data, aes(x = seq(as.Date(”1980-01-01"),
as.Date(”71991-10-01"), by = "month”), y = Sales)
)+
geom_point () +
geom_line () +

labs(title = ”Monthly Wine Sales (Jan 1980 — Oct
1991)7,
x = "Months”,
y = "Sales”) +

theme_minimal ()

R code Exa 1.1.3 Accidental deaths
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# Page No. 2
# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)
deaths= read.csv(”DEATHS.TSM” , header = FALSE)
colnames (deaths) [1]<- " deaths”
ggplot (deaths, aes(x = seq(as.Date(”1973-01-01"), as
.Date(”71978—-12—-01"), by = "month”), y = deaths))
+
geom_point (shape = 15, size = 1) +
geom_line () +
labs(title = "Deaths (Jan 1973 — Nov 1978)7,

x = "Months”,
y = "Deaths”) +
theme_minimal ()

R code Exa 1.1.4 Signal Detection Problem

# Page No. 3

set.seed (123)

t <= 1:200

N <- rnorm (200, mean = 0, sd = 0.5)

X <- cos(t/10)

plot(t, X, type = 717, col = "blue”, xlab = "t”7,
ylab = "X”, main = " Signal plot”,lwd=2)

points(t, N, pch = 16, col = "black”, bg = "black”,
cex = 0.5)

R code Exa 1.1.5 Population of the USA

# Page No. 4

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—7.zip

8
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library (ggplot2)
uspop= read.csv (”USPOP.TSM”)
names (uspop) [names (uspop) == "X39292147] <- 7
population”
start_year=1790
num_repeated=20
interval=10
ggplot (uspop, aes(x=seq_len(num_repeated) * interval
+ start_year, y = population)) +
geom_point () +
geom_line() +
labs(title = ”"Population”,
x = "Years”,
y = "US population”) +
theme _minimal ()

R code Exa 1.1.6 Strikes in USA

# Page No. 4
# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—-21657—7.zip
library (ggplot2)
strike <- read.delim(”STRIKES.TSM”, header = FALSE)
colnames (strike) [1] <- 7" Strikes”
start_year=1951
end_year=1980
ggplot(strike, aes(x=seq(start_year,end_year), y =
Strikes)) +
geom_point () +
geom_line () +

labs(title = ” Strikes in US”,
x = "Years”,
y = "Strikes”) +

theme_minimal ()
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R code Exa 1.3.3 Random walk

# Page no. 7

set.seed (123)

t <- 200

steps <- rnorm(t)

random_walk <- cumsum(steps)

plot(0:t, c(0, random_walk), type = 717, col = ”"blue

7
3

xlab = "Time”, ylab = "Value”, main = " Simple
Random Walk”)
points(0:t, c(0, random_walk), col = "red”, pch = 1)

R code Exa 1.3.4 Regression on population data

# Page No. 8

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

uspop= read.delim ("USPOP.TSM”, header = FALSE)

colnames (uspop) [1]1<- "population”

start _year=1790

num_repeated=21

interval=10

uspop$years <- seq_len(num_repeated) * interval+
start_year

fit<-Im(population ~ poly(years,2,raw = TRUE), data
= uspop)

ggplot (uspop, aes(x=years, y=population)) +
geom_point () +
geom_smooth (method = "lm”, formula =y “poly(x,2,

raw=TRUE), se = FALSE) +

10
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labs(title = "US Population”,
x = "Years”,
y = ”"Population”) +
theme_minimal ()

R code Exa 1.3.5 Level of Lake Huron

# Page No. 9

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

hudson= read.csv("LAKE.TSM”, header = FALSE)

colnames (hudson) [1] <- 7"level”

start_year=1875

end_year=1972

hudson$years <-(seq(start_year,end_year))

fit<-1lm(level “years,data = hudson)

residuals <- resid(fit)

residual _df <- data.frame(years = hudson$years,
residuals = residuals)

par (mfrow=c(1,2))
# Figure 1-9

plot (hudson$years, hudson$level, type = 70",
main = " Lake Hudson”, xlab = ”Years”, ylab = 7"
Water levels”, pch = 19)
abline (fit, col = 7 blue”,lw=2)

# Figure 1-10
plot (residual _df$years,residual _df$residuals, type =
70”7 ,pch = 19,

xlab = "Years”, ylab = "Residuals”, main = 7"
Residuals plot”)
abline(h = 0, col = 7"blue”, 1w = 2)

print (coef (fit))

11
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R code Exa 1.3.6 Harmonic regression on accidental deaths

# Page No. 11

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

colnames (deaths) [1] <- "deaths”

n <- length(deaths$deaths)

time <- 1:n

f1 <- n / 12

f2 <- n / 6

fit <- 1Im(deaths$deaths ~ sin(2 * pi * time / f1) +
cos(2 * pi * time / f1) +

sin(2 * pi * time / £f2) + cos(2 * pi *
time / £2))
fitted_values <- predict(fit)

plot (time, deaths$deaths, type = "p”, col = "black”,
pch = 15, xlab = "Time”, ylab = ”"Value”,
main = "Harmonic Fit”)
lines(time, fitted_values, col = ”blue”, 1lw =2)

R code Exa 1.4.6 Random noise

# Page No. 16
# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—7.zip

library (ggplot2)

set.seed (123)

noise <- rnorm(200, mean = O
df <- data.frame(Index = 1:2
ggplot (df, aes(x = Index, y

, sd = 1)
00, Noise = noise)
= Noise)) +

12



10

11
12
13
14
15

16
17
18
19
20

21
22

N =

© 00 J O U i W

10

11
12

geom_point () +
geom_line () +
labs(x = "Index”, y = "Noise”, title = ”"Simulated
N(0,1) Noise”)+
theme_minimal ()
acf_result <- acf(noise, plot = FALSE)
n <- length(noise)
bounds <- 1.96 / sqrt(mn)
acf_df <- data.frame(Lag = acf_result$lag, ACF = acf
_result$act)
ggplot (acf_df, aes(x = Lag, y = ACF)) +
geom_hline(yintercept = c(-bounds, bounds)) +
geom_hline (yintercept 0) +
geom_segment (aes (xend Lag, yend = 0)) +
labs(x = "Lag”, y = "ACF”, title = " Sample
Autocorrelation Function (ACF)”) +
ylim(-1, 1)+
theme _minimal ()

R code Exa 1.5.1 Moving average of strikes

# Page No. 22

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (zoo)

strike<- read.csv(”STRIKES.TSM” , header =FALSE)

colnames (strike) [1] <- 7 Strikes”

start_year=1951

end_year=1980

window_size <- b

strike$Moving Avg <- rollmean(strike$Strikes, k =
window_size, fill = NA)

strike$residuals <- strike$Strikes-strike$Moving_Avg

# Figure 1-18

13
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ggplot )+

geom_line(data=strike, aes(x = seq(start_year,end_
year) ,y=Moving_Avg))+

geom_point (data=strike, aes(x = seq(start_year,end
_year) ,y=strike$Strikes) )+

labs(x = "Year”, y = " Strikes”, title = 7 Strikes

Data with Moving Average”)+
theme _minimal ()
# Figure 1-19
ggplot (data=strike, aes(x = seq(start_year,end_year)
,y=residuals))+

20
21
22

23

geom_line () +

geom_point ()+

labs(x = ”"Year”, y = 7 Strikes”, title = " Strikes
Data residuals”)+

theme_minimal ()

N
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R code Exa 1.5.2 Smooth exponential and low pass filter

# Page No. 24

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

strike<- read.csv(”STRIKES.TSM” , header = FALSE)

colnames (strike) [1] <- 7 Strikes”

# Figure 1-21

plot (smooth.exp(ts(strike$Strikes) ,0.4))

lines (smooth.exp(ts(strike$Strikes) ,0.4))

# Figure 1-22

plot (smooth.fft(ts(strike$Strikes) ,0.4))

lines (smooth.fft(ts(strike$Strikes) ,0.4))

R code Exa 1.5.3 Differenced series

14
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# Page No. 11

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

library (pracma)

library (dplyr)

uspop= read.delim ("USPOP.TSM”, header = FALSE)

colnames (uspop) [1] <- " population”

start_year=1790

num_repeated=21

interval=10

uspop$years <- seq_len(num_repeated) * interval+
start_year

diff2 <- diff(diff (uspop$population))

uspop <- slice(uspop,-(1:2))

uspop$diff2 <- diff2

ggplot (uspop, aes(x = years, y = diff2)) +
geom_point ()+
geom_line () +

labs(title = ”"Second—Order Differences of
Population Data”,
x = "Years”, y = 7"Second—Order Differences”)+

theme_minimal ()

R code Exa 1.5.4 Deseasonalization and seasonal component

# Page No. 28

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

library (pracma)

deaths<-read.delim ("DEATHS.TSM” , header =FALSE)

deaths$years<- seq(as.Date(”1973—-01-01"), as.Date(”
1978 —-12—-01"), by = "month”)

period <- 12

15
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colnames (deaths) [1] <- ”deaths”

decomposition <- decompose(ts(deaths$deaths,
frequency = period))

seasonal _component <- decomposition$seasonal

deseasonalized_data <- deaths$deaths - seasonal_
component

deseasonalized_df <- data.frame(years = deaths$years
, deseasonalized_deaths = deseasonalized_data)

seasonal _component_df <- data.frame(years = deaths$
years, seasonal_component = seasonal_component)

# Figure 1-24
ggplot (deseasonalized_df, aes(x = years, y =
deseasonalized_deaths)) +

geom_line(color = "blue”) +

geom_point ()+

labs(x = "Years”, y = "Deseasonalized Deaths”,
title = ”Deseasonalized Deaths”) +

theme_minimal ()
# Figure 1-25

ggplot (seasonal _component_df, aes(x = years, y =
seasonal _component)) +
geom_line(color = "red”) +
geom_point ()+
labs(x = "Years”, y = "Seasonal Component”, title

= 7 Seasonal Component”) +
theme_minimal ()

R code Exa 1.5.5 Estimation of seasonal component

# Page No. 28

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (dplyr)

deaths= read.delim ("DEATHS.TSM”, header = FALSE)

16
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colnames (deaths) [1] <- " deaths”
deaths$months=seq(as.Date(”1973-01-01"), as.Date(”
1978 —-12—01") ,by="month ")
diffl <- diff (deaths$deaths, lag
deaths <- slice(deaths,-(1:12))
deaths$diffl <- diff1

12)

# Figure 1-26

diff1)) +

ggplot (deaths, aes(x = months, y
geom_point ()+
geom_line () +
labs(title = "First —Order Differences of deaths
Data”,
x = "months”, y = "First —Order Differences”)+
theme_minimal ()

# Figure 1-27

diff2 <- diff (deaths$diffl)

deaths <- slice(deaths,-1)

deaths$diff2 <- diff2

ggplot (deaths, aes(x = months, y = diff2)) +
geom_point ()+
geom_line() +

labs(title = ”"Second—Order Differences of deaths
Data”,
x = "months”, y = ”"Second—Order Differences”)
+

theme_minimal ()

R code Exa 1.6.1 ACF on signal data

# Page No. 33

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

signal<- read.delim (”SIGNAL.TSM”, header = FALSE)

colnames (signal) [1] <- 7" signals”

acf_values <- acf(signal$signals, plot = FALSE)S$acf

17



6 n <- length(signal$signals)

7 conf_bound <- 1.96 / sqrt(n)

8 plot(acf_values, ylim = c(-conf_bound, conf_bound),

9 main = ”Sample Autocorrelation Function (ACF)”

10 ylab = "ACF”, xlab = "Lag”, type = "h”)

11 abline(h = c(-conf_bound, conf_bound), col = "red”,
1ty = 2)

12 abline(h = 0, 1ty = 2)

18
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Chapter 2

Stationary Processes

R code Exa 2.4.3 MA1 Process

# Page No. 53
n <- 200
set.seed (123)
Z <- rnorm(n)
X <- numeric(n)
X[1] <- Z[1]
for (i in 2:n) {
X[i] <- Z[i] - 0.8 * Z[i-1]
}
acf_values <- acf(X, plot = FALSE)$acft
plot (0:40, acf_values[1:41], type = "h”, ylim = c¢
(-1, 1),
xlab = "Lag”, ylab = "ACF”, main = " Sample
Autocorrelation Function for MA(1)”)
abline(h = c(-1.96/sqrt(n), 1.96/sqrt(n)), col =7
red”, 1ty = 2)
abline(h = 0, col = "blue”, 1ty = 1)

R code Exa 2.4.4 AR1 Process

19
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# Page No. 54

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

hudson= read.csv ("LAKE.TSM”)

names (hudson) [names (hudson) == "X10.387] <- "level”

start _year=1876

end_year=1972

hudson$years <- seq(start_year,end_year)

fit<-1m(level “years,data = hudson)

residuals <- resid(fit)

residuals_df <- data.frame(years = hudson$years,
residuals = residuals)

n <- nrow(residuals_df)

phi <- 0.791

model _acf <- function(i) {
phi~i

}

confidence_bounds <- function(i) {
1.96 * (n~(-0.5)) * sqrt(((1 - (phi~(2*i))) * (1 +

(phi~2))) / (1 - (phi~2)))

}

acf_values <- acf(residuals_df$residuals, plot =
FALSE) $acf

upper _conf _bounds <- sapply(1:40, function(i) {
confidence_bounds (i) + (phi~i)

b
lower _conf_bounds <- sapply(1:40, function(i) {
(phi~i) - confidence_bounds (i)
1))
plot (0:40, acf_values[1:41], type = "h”, ylim = c
(-1, 1),
xlab = "Lag”, ylab = "ACF”, main = ”Sample
Autocorrelation Function of Residuals (AR(1)
)
lines (1:40, upper_conf_bounds, col = "red”, 1lty = 2)
lines (1:40, lower_conf_bounds, col = "red”, 1lty = 2)

20
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# Plot the model ACF
points (1:40, sapply(1:40, model_acf), type = "b”,
col = "blue”)

R code Exa 2.5.5 Durbin Levinson and innovations algorithm

# Page no. 64

compute_autocovariance <- function(phi) {
gamma_0 <- 1 + phi~2
gamma_1 <- -phi

return(list (gamma_O0 = gamma_O, gamma_1 = gamma_1))
}
innovation_algorithm <- function(gamma) {
theta_11 <- -gamma$gamma_1 / gamma$gamma_0O
return(list (theta_11 = theta_11))
}

durbin_levinson_algorithm <- function(gamma) {
phi_11 <- gamma$gamma_1 / gamma$gamma_0O
sigma_1_squared <- gamma$gamma_O0 * (1 - phi_1172)
return(list(phi_11 = phi_11, sigma_1_squared =

sigma_1_squared))

}

phi <- 0.9

gamma <- compute_autocovariance (phi)

theta <- innovation_algorithm(gamma)

phi_result <- durbin_levinson_algorithm(gamma)

cat (paste0(”theta_11 = 7, theta$theta_11, "\n”))

cat (paste0(”"phi_11 = 7, phi_result$phi_11, ”"\n”))
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Chapter 3
ARMA Models

R code Exa 3.1.1 ARMA 11

# Page no.76

ar_params <- c(0.5)

ma_params <- c(0.4)

is_invertible <- function(ma_params) {
roots <- polyroot(c(l, ma_params))
all(abs(roots) > 1)

}

invertibility_status <- is_invertible (ma_params)
invertibility_status

R code Exa 3.1.2 AR2 Process

# Page no.76

# Coefficients of AR(2) model
phil <- 0.7

phi2 <- -0.1

poly_coefs <- c(1, -phil, -phi2)

22
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roots <- polyroot(poly_coefs)
cat ("Roots of the characteristic polynomial (zeros
of the AR(2) process):\n”)

cat (roots, ”"\n”)

R code Exa 3.1.3 ARMA 21

# Page no. 77

ar _params <- c(-0.75, 0.5625)

ma_params <- c(1.25)

is_invertible <- function(ma_params) {
roots <- polyroot(c(l, ma_params))
all(abs(roots) > 1)

}

invertibility_status <- is_invertible (ma_params)

invertibility_status

R code Exa 3.2.4 General AR2 process

# Page No. 80

# Figure 3-1
library(stats)

xil <- 2

xi2 <- 5

phil <- 1/xil + 1/xi2

phi2 <- -(1/xi1) * (1/xi2)
set.seed (123)

n <- 1000

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar _process, main = ”Sample ACF of AR(2) Process”
)

# Figure 3-2
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xil <- 10/9

Xxi2 <- 2

phil <- 1/xil + 1/xi?2

phi2 <- -(1/xil1) * (1/xi2)

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar_process, main = ”"Sample ACF of AR(2) Process”
)

# Figure 3-3

xi1 <- -10/9

xi2 <- 2

phil <- 1/xil + 1/%i?2

phi2 <- -(1/xi1) * (1/xi2)

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar_process, main = ”"Sample ACF of AR(2) Process”
)

# Figure 3—4

xil <- complex(real 2/3, imaginary = 2*sqrt(3)/3)
xi2 <- complex(real = 2/3, imaginary = -2*sqrt(3)/3)
phil <- Re(1/xil + 1/xi2)

phi2 <- Re(-(1/xil1) * (1/xi2))

ar_process <- arima.sim(model = list(ar = c(phil,
phi2)), n = n)

acf (ar _process, main = ”Sample ACF of AR(2) Process”
)

R code Exa 3.2.8 Overshorts series

# Page No. 84

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

oshorts<- read.csv(”OSHORTS.TSM”, header =FALSE)

colnames (oshorts) [1] <- "overshorts”
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oshorts$days <- seq(l,nrow(oshorts))
# Figure 3-5

plot (oshorts$days,oshorts$overshorts, xlab = ”Days”,
ylab = " Overshorts”,
type = 'o’, col = "blue”)
abline (h=0)

# Figure 3—6

acf_result <- acf(oshorts$overshorts, plot

n <- length(oshorts)

bounds <- 1.96 * ((1 + 2 *x acf_result$acf[2]72)"(1/
2)) / sqrt(n)

plot (acf_result, main = ”"Sample ACF with Bounds”)

print (mean (oshorts$overshorts))

acvf<-acf (oshorts$overshorts, plot= FALSE, type =
covariance ')

print (acvf$acf [1])

print (acvf$act [2])

FALSE)

J

R code Exa 3.2.9 The sunspot numbers

# Page No. 86

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (ggplot2)

spots<- read.csv(”SUNSPOTS.TSM” ,header = FALSE)

colnames (spots) [1] <- "sunspots”

pacf _result <- pacf(spots, plot = FALSE)

bounds <- 1.96 / sqrt(100)

plot (pacf_result, main = ”"Sample PACF”)

print (pacf_result)

acvf<-acf (spots$sunspots, plot= FALSE, type =
covariance ')

print (acvf$acf [1])

print (acvf$act [2])

print Cacvf$act [3])

Y
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R code Exa 3.3.4 Numerical prediction of ARMA 2 3

# Page no. 90

# Answer may vary due to randomization in simulation
library (forecast)

ar _params <- c(1,-0.24)

ma_params <- c(0.4, 0.2, 0.1)

set.seed (46)

n <- 10
arma_process <- arima.sim(model = list(ar = ar_
params, ma = ma_params), n = n)

print (arma_process)
acf _values <- acf(arma_process, type="covariance”,
plot=FALSE)$acf
gamma_0 <- acf_values[1]
gamma_1 <- acf_values [2]
gamma _2 <- acf_values [3]
cat ("gamma_0 =", gamma_0, ”\n”)
cat ("gamma_1 =", gamma_1, ”\n”)
cat ("gamma_2 =", gamma_2, ”\n”)
innovations_algorithm <- function(arma_process, n
steps) {
n <- length(arma_process)
predictions <- numeric(n_steps)
e <- numeric(n + n_steps)
phi <- numeric(n + n_steps)
theta <- numeric(n + n_steps)
for (i in 1:n_steps) {
predictions [i] <- sum(ar_params * arma_process [(
n-i+1) : (n-i+2)1])
+ sum(ma_params * e[(n-i+1):(n-i+3)])
e[n+i] <- arma_process[i] - predictions([i]

}

return(predictions)
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predictions <- innovations_algorithm(arma_process,
10)
print (predictions)

R code Exa 3.3.5 h step prediction of ARMA

# Page no. 91

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)

ar _params <- c(1,-0.24)

ma_params <- c(0.4, 0.2, 0.1)

E334 <- read.delim(”E334.TSM”, header = FALSE)

colnames (E334) [1] <- "E”

Ets <- ts(E334$E)

arma_model <- Arima(Ets, order=c(2, 0, 3))

forecasts <- forecast(arma_model, h=10)

cat ("\nForecasted values for the next 10 steps:\n”)

print (forecasts$fitted)
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Chapter 4

Spectral Analysis

R code Exa 4.1.2 Linear combination of sinusoids

# Page no. 101
# Answer may vary due to randomization
library (ggplot2)
k <= 2
omega <- seq(pi/4, pi/6, length.out = k)
sigma2 <- 9
t <- 1:100
set.seed (123)
A <- rnorm(k, mean 0, sd sqrt (sigma?2))
B <- rnorm(k, mean = 0, sd sqrt (sigma?2))
X_t <- sapply(t, function(ti) {
sum (A * cos(omega * ti) + B * sin(omega * ti))
1))
df <- data.frame(Time = t, Value = X_t)
ggplot (df , aes(x = Time, y = Value)) +
geom_line () +
geom_point () +
ggtitle (" Sample Path”) +
xlab (" Time”) +
ylab ("X(t)”) +
theme _minimal ()
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F_lambda <- function(lambda, omega, sigma2) {

sapply (lambda, function(l) {
sum(sigma2 * (0.5 * (1 >= -omega & 1 < omega) +
1.0 * (1 >= omega)))

1)

}

lambda <- seq(-pi, pi, length.out = 1000)

F_values <- F_lambda(lambda, omega, sigma2)

df _F <- data.frame(Lambda = lambda, F_Lambda = F_
values)

ggplot(df _F, aes(x = Lambda, y = F_Lambda)) +
geom_step () +
ggtitle (" Spectral Distribution Function F( )7) +
xlab(” 7)) +
ylab("F( )”") +
theme_minimal ()

R code Exa 4.1.4 Spectral density of AR 1

# Page no. 103

library (ggplot2)

library(stats)

set.seed (123)

n <- 1000

# Figure 4-3

phi <- 0.7

sigma2 <- 1

density <- function(lambda, phi, sigma2) {
1/ (2 % pi) * sigma2 / (1 + phi~"2 - 2 % phi * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, phi, sigma2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

29



15 ggplot (df _spectral, aes(x = Lambda, y =
SpectralDensity)) +

16 geom_line () +

17 ggtitle (" Spectral Density”) +

18 xlab(” 7)) +
19 ylab(” Spectral Density”) +
20 theme_minimal ()

21 # Figure 4-—-4

22 phi <- -0.7

23 sigma2 <- 1

24 density <- function(lambda, phi, sigma2) {

25 1/ (2 % pi) * sigma2 / (1 + phi~"2 - 2 % phi * cos

(lambda))

26 %}

27 lambda <- seq(0, pi, length.out = 1000)

28 values <- density(lambda, phi, sigma2)

29 df_spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

30 ggplot(df_spectral, aes(x = Lambda, y =
SpectralDensity)) +

31 geom_line () +

32 ggtitle(” Spectral Density”) +

33 xlab(” 7)) +
34 ylab(” Spectral Density”) +
35 theme _minimal ()

36 # Figure 4-5

37 phi <- 0.7

38 ar_process <- arima.sim(model = list(ar = c(phi)), n
= n)

39 acf (ar_process, main = "ACF of AR(1) Process”)

40 # Figure 4—6

41 phi <- -0.7

42 ar_process <- arima.sim(model = list(ar = c(phi)), n
= n)

43 acf (ar_process, main = "ACF of AR(1) Process”)
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R code Exa 4.1.5 Spectral density of MA 1

# Page no. 105

library (ggplot2)

theta <- 0.9

sigma2 <- 1

density <- function(lambda, theta, sigma2) {

sigma2 / (2 * pi) * (1 + theta"2 + 2 * theta * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, theta, sigma?2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

# Figure 4-7

ggplot (df _spectral, aes(x = Lambda, y =
SpectralDensity)) +
geom_line() +
ggtitle (” Spectral Density of MA(1) Process”) +
xlab(expression(lambda)) +
ylab(expression (f(lambda))) +
theme_minimal ()

# Figure 4-8

theta <- -0.9

sigma2 <- 1

density <- function(lambda, theta, sigma2) {
sigma2 / (2 * pi) * (1 + theta”2 + 2 * theta * cos

(lambda))

}

lambda <- seq(0, pi, length.out = 1000)

values <- density(lambda, theta, sigma2)

df _spectral <- data.frame(Lambda = lambda,
SpectralDensity = values)

ggplot (df _spectral, aes(x = Lambda, y =
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SpectralDensity)) +

geom_line () +

ggtitle (” Spectral Density of MA(1) Process”) +
xlab(expression(lambda)) +

ylab (expression(f(lambda))) +

theme_minimal ()

R code Exa 4.2.2 Sunspot numbers spectral density

# Page No. 110

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library (ggplot2)

library (TSA)

library(stats)

library (itsmr)

spots= read.csv (”SUNSPOTS.TSM”, header =FALSE)

colnames (spots) [1]<- "sunspots”
periodogram <- spec.pgram(spots, log = "no”, plot =
FALSE)

freq <- periodogram$freq

spec <- periodogram$spec

weights <- rep(1/3, 3)

freq <- freq * (2 * pi)

smoothed _spec <- stats::filter(spec, filter=weights,

sides=2)

# Figure 4-9

p <- periodogram(ts(spots$sunspots), q = 1, opt = 0)

plot (p$freq, (p$spec)/(2*pi), type = "o—", pch=19,
xlab = "frequency”, ylab = ”"spectral density”)

# Figure 4-—-10

df <- data.frame(freq = freq, smoothed_spec =
smoothed _spec)

ggplot (df, aes(x = freq, y = smoothed_spec)) +
geom_line () +
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scale_x_continuous(limits = c(0, pi)) +
labs (

x = expression(lambda),

y = expression (hat(f) (lambda)),

title = ”Spectral Density Estimate”
) 4+

theme _minimal ()

# Figure 4-11

weights <- c(1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/
15)

smoothed _spec <- stats::filter(spec, filter=weights,

sides=2)

df <- data.frame(freq = freq, smoothed_spec =
smoothed _spec)

ggplot(df, aes(x = freq, y = smoothed_spec)) +
geom_line() +

scale_x_continuous(limits = c(0, pi)) +
labs(

x = expression(lambda),

y = expression (hat(f) (lambda)),

title = ”Spectral Density Estimate”
) 4+

theme_minimal ()

R code Exa 4.4.1 Spectral density of AR 2

# Page 112
library (ggplot2)
D_q <- function(lambda, q) {
if (lambda == 0) A
return (1)
} else {
return(sin((q + 0.5) * lambda) / ((2 * g + 1) =*
sin(lambda / 2)))
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9 %

10 g <- 10

11 lambda <- seq(0, pi, length.out = 1000)

12 D_10 <- sapply(lambda, D_q, q = q)

13 df <- data.frame(lambda = lambda, D_10 = D_10)
14 ggplot(df, aes(x = lambda, y = D_10)) +

15 geom_line () +

16 labs(

17 X = expression(lambda),

18 y = expression(D[10] (lambda)),

19 title = ”"Transfer Function D[10](lambda) for
Simple Moving—Average Filter”

20 )+

21 theme_minimal ()

22 # Figure 4-—13

23 ideal _low_pass <- function(lambda, wc) {
24 ifelse(abs(lambda) <= wc, 1, 0)

25 }

26 wc <- pi / 4

27 q_values <- c(2, 10)

28 ideal _values <- ideal_low_pass (lambda, wc)
29 D_2_values <- sapply(lambda, D_q, q = 2)
30 D_10_values <- sapply(lambda, D_q, g = 10)
31 df <- data.frame(

32 lambda = rep(lambda, 3),

33 value = c(ideal_values, D_2_values, D_10_values),

34 type = factor(rep(c(”Ideal”, 7q = 27, "q = 107),
each = length(lambda)))

35 )

36 ggplot(df, aes(x = lambda, y = value, color = type))

+

37 geom_line() +

38 labs(

39 X = expression(lambda),

40 y = "Transfer Function”,

41 title = ”"Transfer Functions: Ideal Low—Pass

Filter and Truncated Fourier Approximations”
42 )+

34



43 scale_color_manual (values = c(”Ideal” = ”"black”, ”

q — 277 = 77b1ue77, 77q — 1077 - 77red77)) +
44 theme _minimal () +
45 theme (legend.title = element_blank())
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Chapter 5

Modeling and Forecasting with
ARMA Processes

R code Exa 5.1.1 The Dow Jones Utilities Index

# Page No. 126

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (forecast)

library(tseries)

dow<- read.csv(”"DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- " jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff(dowjones, lag = 1)

ar_model <- ar(dowjones_diff, order.max = 1, method
= "yule—walker”)

sample_autocovariance <- acf(dowjones_diff, plot =
FALSE, type = ’'covariance ')

ar_coefficient <- ar_model$ar

par (mfrow = c(1, 2))

acf (dowjones_diff, main = "ACF of Differenced Series
77)

pacf (dowjones_diff, main = "PACF of Differenced
Series”)
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print (sample_autocovariance)
print (ar_coefficient)

R code Exa 5.1.2 MA 1 model forecasting

# Page No. 128

library (forecast)

library(tseries)

oshorts<- read.csv(?”OSHORTS.TSM”, header = FALSE)

colnames (oshorts) [1]1<- "overshorts”

ots <- ts(oshorts$overshorts)

rho_1 <- acf(ots, plot=FALSE)$acf [2]

gamma <- acf(ots, plot = FALSE, type = ’covariance’)
$acf [1]

if (abs(rho_1) > 0.5) {
theta_hat <- rho_1/abs(rho_1)
} else {
theta_hat <- (rho_1) * sqrt(4 * rho_1"2 - 4 * rho_
1) / (2 * abs(rho_1))

}

sigma2_hat <- gamma / (1 + theta_hat~2)

cat (" Estimated theta_hat:”, theta_hat, ”\n”)
cat (" Estimated sigma2_hat:”, sigma2_hat, "\n”)

R code Exa 5.1.3 Dow jones utilities index using burg model

# Page No. 131

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library(tseries)

library (itsmr)

dow<- read.csv(”"DOWJ.TSM” , header = FALSE)
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colnames (dow) [1] <- "jones”
time_series <- ts(dow$jones)

Y_t <- diff(time_series, lag=1)
ar_order <- 1

burg_model <- burg(Y_t, ar_order)
ar_param <- burg_model$phi
stderror <- (burg_model$se.phi)
aicc <- burg_model$aicc

cat ("AR(1) model parameter:”, ar_param, ”\n”)

cat ("AICC:”, aicc, "\n”)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)

}
confs <- find_conf (ar_param,stderror)
cat ("95% Confidence Bounds: ”,confs)

R code Exa 5.1.4 Modeling on Lake data

# Page No. 131

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library(tseries)
library (itsmr)

huron<- read.csv("LAKE.TSM” , header=FALSE)

colnames (huron) [1] <- ’water’

time_series <- ts(huron$water)
Y _ t <- time_series

X_t <- Y_t - 9.0041

par (mfrow = c(1, 2))

# Figure 5-—3

acf(X_t, main = 7ACF”)

# Figure 5—4

38



14 pacf(X_t, main = "PACF”)

15 ar_order <-2

16

17 # Burg model

18 burg_model <- burg(X_t, ar_order)

19 arb_param <- burg_model$phi

20 stderr <- (burg_model$se.phi)

21 aicc <- burg_model$aicc

22 conf_lower <- arb_param - (stderr*1.96)

23 conf_upper <- arb_param + (stderr*1.96)

24 print(” For burg model: 7)

25 cat(”AR(1) model parameter:”, arb_param, "\n”)

26 cat ("AICC:”, aicc, 7\n”)

27 cat (”795% Confidence Bounds: (7, conf_lower, 7, 7,
conf _upper, ”)\n")

28

29 # Yule walker model

30 yw_model <- yw(X_t, ar_order)

31 ary_param <- yw_model$phi

32 stderr <- (yw_model$se.phi)

33 aicc <- yw_model$aicc

34 conf_lower <- ary_param - (stderrx*1.96)

35 conf_upper <- ary_param + (stderrx*1.96)

36 print(” For yule walker model: 7)

37 cat("AR(1) model parameter:”, ary_param, ”\n”)

38 cat (7AICC:”, aicc, "\n”)

39 cat(”95% Confidence Bounds: (7, conf_lower, 7,6 7,
conf _upper, 7 )\n”)

R code Exa 5.1.5 Estimations on Dow jones utilities index

1 # Page No. 134

2 # Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

3 library(tseries)
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library (itsmr)

dow<- read.csv("DOWJ.TSM” , header

colnames (dow) [1] <- "jones”

time_series <- ts(dow$jones)

Y t <- diff(time_series, lag=1)

ma_order <- 2

inno_model <- ia(Y_t, ma_order, m = 17)

ma_param <- inno_model$theta

stderr <- (inno_model$se.theta)

aicc <- inno_model$aicc

stddev_1 <- ma_param[1]/(1.96*stderr [1])

stddev_2 <- ma_param[2]/(1.96*stderr [2])

wnvar <- inno_model$sigma?2

cat ("MA(2) model parameter:”, ma_param, ”\n”)

cat ("AICC:”, aicc, "\n”)

print (” Standard deviations for first two MA
parameters:”)

print (stddev_1) ;print (stddev_2)

cat (" White noise variance: 7, wnvar)

FALSE)

R code Exa 5.1.6 Estimations on Lake data

# Page No. 137

library (itsmr)

library(tseries)

huron<- read.csv(”LAKE.TSM” , header = FALSE)
colnames (huron) [1] <- ’water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

arma_model <- arma(X_t, p=1, qg=1)
ma_param <- arma_model$theta
ar_param <- arma_model$phi

stderr _phi <- arma_model$se.phi
stderr_theta <- arma_model$se.theta
aicc <- arma_model$aicc
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stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)

cat (" Estimated AR coefficient: 7, ar_param, "\n”)
cat (" Estimated MA coefficient: 7, ma_param, ”\n”)
cat ("AICC: 7, aicc, "\n”)

cat (” Standard deviations: 7, stddev_phi, 7 7,

stddev_theta)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)

}
conf_phi <- find_conf (ar_param, stderr_phi)
cat ("95% Confidence Bounds for phi: 7, conf_phi)

conf_theta <- find_conf(ma_param, stderr_theta)

cat ("95% Confidence Bounds for theta: ”, conf_theta)

R code Exa 5.1.7 Lake data analysis using Hannan algorithm

# Page No. 138

# Downloading link: https://storage.googleapis.com/

springer —extras/zip/2002/978—0—-387—21657—7.zip
library (itsmr)
library(tseries)
huron<- read.csv(”LAKE.TSM” , header = FALSE)
colnames (huron) [1] <- ’water’
time_series <- ts(huron$water)
Y_t <- time_series
X_t <= Y_t - mean(Y_t)
p <- 1
q <- 1
h_model <- hannan(X_t, p, q)
ar_param <- h_model$phi
ma_param <- h_model$theta
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aicc <- h_model$aicc

stderr _phi <- h_model$se.phi

stderr_theta <- h_model$se.theta

stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)

cat ("Estimated AR coefficient: 7, ar_param, ”"\n”)
cat ("Estimated MA coefficient: 7, ma_param, ”"\n”)
cat ("AICC: 7, aicc, 7\n”)
cat (7 Standard deviations , phi and theta
respectively: 7, stddev_phi, stddev_theta)
find_conf <- function(param, stderr)({
low <- param - (stderrx*1.96)

high <- param + (stderr*1.96)
x <- c(low, high)
return (x)
}
confs_phi <- find_conf (ar_param,stderr_phi)
cat ("95% Confidence Bounds for phi: ”,confs_phi)
confs_theta <- find_conf(ma_param,stderr_theta)
cat ("95% Confidence Bounds for theta: ”,confs_theta)

R code Exa 5.2.4 Burg and yule walker model comparison

# Page No. 143

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (itsmr)

library(tseries)

dow<- read.csv("DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- "jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff (dowjones, lag = 1)

dow_mean_diff <- dowjones_diff - mean(dowjones_diff)

p <- 1; g <- 0; n <- length(dow_mean_diff)

ywmodel <- yw(dow_mean_diff, p)
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bmodel <- burg(dow_mean_diff, p)
model <- autofit(dow_mean_diff, p=0:5, gq=0:5)
aicc <- model$aicc
aicc_yw <- ywmodel$aicc
aicc_b <- bmodel$aicc
LL_yw <- aicc_yw - (2*(p+q+1)*n/(n-p-q-2))
LL_b <- aicc_b - (2*(p+qg+1l)*n/(n-p-q-2))
LL <- aicc - (2*x(p+g+1)*n/(n-p-q-2))
b_param <- bmodel$phi
stderr <- model$se.phi
ar _param <- model$phi
find_conf <- function(param, stderr)({

low <- param - (stderr*1.96)

high <- param + (stderr*1.96)

x <- c(low, high)

return (x)
}

confs <- find_conf (ar_param,stderr)

cat (”Minimum AICC:” ,aicc,”\n”)

cat (” Standard error:”,stderr,”\n”)

cat ("95% Confidence Bounds: 7 ,confs)

cat ("Log likelihood for autofit:”,LL,”\n”)
cat (" Parameters in burg model:” ,b_param,”\n”)

cat ("Log likelihood for yule walker:” ,LL_yw,”\n”)
cat ("Log likelihood for burg:”,LL_b,”\n”)

R code Exa 5.2.5 Autofit on Lake data

# Page No. 144

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library(tseries)

hudson <- read.csv(?”LAKE.TSM”, header = FALSE)
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colnames (hudson) [1]<- 7level”
Y_t <- ts(hudson$level)
X_t <= Y_t - mean(Y_t)
arma_model <- autofit(X_t, p=0:5, gq=0:5)
aicc <- arma_model$aicc
ar_param <- arma_model$phi
ma_param <- arma_model$theta
stderr_phi <- arma_model$se.phi
stderr_theta <- arma_model$se.theta
stddev_phi <- ar_param/(1.96*stderr_phi)
stddev_theta <- ma_param/(1.96*stderr_theta)
find_conf <- function(param, stderr)({
low <- param - (stderr*1.96)
high <- param + (stderr*1.96)
x <- c(low, high)
return (x)
}
confs_phi <- find_conf (ar_param,stderr_phi)
confs_theta <- find_conf(ma_param,stderr_theta)
cat ("AICC:” ,aicc,”\n")
cat ("AR Parameter:” ,ar_param,”\n”)
cat ("MA Parameter” ,ma_param,”\n”)
cat (" Standard deviations for phi and theta:”,stddev_
phi,stddev_theta,”\n”)
print (795% Confidence intervals:”)
cat (" for phi:”,confs_phi,”\n”)
cat ("for theta:”,confs_theta,”\n”)

R code Exa 5.4.1 Forecasts on overshorts data

# Page No. 147

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

# Answer may vary due to randomization

library(tseries)
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library (forecast)

oshorts<- read.csv(”OSHORTS.TSM” ,header = FALSE)

colnames (oshorts) [1]<- "overshorts”

Xts <- ts(oshorts$overshorts)

best_model <- auto.arima(Xts,max.order = 1, stepwise
= FALSE, approximation = FALSE)

best_model$coef

ma_model <- arima(Xts, order = c(0, 0, 1))

predictions <- predict(ma_model,7)

mean_Xts <- mean(Xts)

predicted_values <- as.numeric(predictions$pred)

mse <- sqrt(mean((Xts - mean_Xts)~ 2 ))

cat (" Predicted Values:\n”)

print (predicted_values)

cat ("Mean Squared Error (MSE):\n”)

print (mse)

R code Exa 5.5.1 FPE based selection of an AR model for Lake data

# Page No. 150
# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—-21657—7.zip
library(tseries)
library (itsmr)
huron<- read.csv(’LAKE.TSM”, header = FALSE)
colnames (huron) [1] <- ’water’
Y_t <- ts(huron$water)
X_t <= Y_t - mean(Y_t)
ar _orders <- 1:10
fpe_values <- numeric(length(ar_orders))
sigma_squared_values <- numeric(length(ar_orders))
for (p in ar_orders) {
ar _model <- arma(X_t, p=p, q=0)
n <- length(X_t)
sigma_squared <- ar_model$sigma?2
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fpe_values[p] <- (n + p) / (n - p) * sigma_squared
sigma_squared_values[p] <- sigma_squared
}
for (p in ar_orders) {
cat ("Order”, p, "— FPE:”, fpe_values[p], "Sigma 2:
7, sigma_squared_values[p], "\n”)

R code Exa 5.5.2 AICC based model selection

# Page No. 153

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library(forecast)

library(tseries)

huron<- read.csv("LAKE.TSM” , header=FALSE)

colnames (huron) [1] <- ’"water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

p <-1,; q <-1

best_model2 <- arma(X_t, p=p, 9=9)

cat (" Best ARIMA model based on AICC:\n”)

print (best_model2$aicc)

p <- 2; qg <- 0

best_modell <- arma(X_t, p=p, q=9)

cat (" Best ARIMA model based on AICC:\n”)

print (best_modell$aicc)
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Chapter 6

Nonstationary and Seasonal
time series models

R code Exa 6.1.1 ARIMA 11 0 Process

# Page No. 159

# Answer may vary due to randomization

library (forecast)

library (ggplot2)

phi <- 0.8

sigma2 <- 1

n <- 200

set.seed (123)

Xt <- arima.sim(model = list(order = c(1,1,0), ar
phi), n = n, sd = sqrt(sigma2))

10 # Figure 6-—1

11 autoplot (Xt) +

12 ggtitle ("TARIMA(1,1,0)”7) +

13 geom_point ()+

14 xlab (" Time”) +

15 ylab ("Xt”) +

16 theme _minimal ()

17 # Figure 6-—2

18 acf_plot <- ggAcf(Xt) +

© 00 N O U b W N
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ggtitle (” Sample ACF”) +
theme_minimal ()

print (acf_plot)

# Figure 6-3

pacf (Xt, main ="Sample PACEF”)

# Figure 6—4

Yt <- diff (Xt)

plot (Yt)

R code Exa 6.2.1 Burg model on Australian wine data

# Page no. 168

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

# Answer may vary due to specific software features

library (forecast)

library(tseries)

library (itsmr)

wine_data <- read.csv(”WINE.TSM”, header = FALSE)

colnames (wine_data) [1] <- ’Sales’

winedata <- ts(wine_data$Sales)

M <- c¢(”season”,12, 7trend” ,1)

newwine <- Resid(winedata ,M)

plot (newwine, type='1")

M <- c("log”,”diff”,12)

newwine <- Resid(winedata ,M)

plot (newwine, type='1")

acf (newwine)

pacf (newwine)

Wts <- newwine-mean(newwine)

burg_model <- burg(Wts, p=12)

print (burg_model)

arma_model <- autofit(Wts, p=0:15, g=0)

print (arma_model)
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R code Exa 6.2.2 Autofit for minimum AICC model

# Page No. 169

library(tseries)

library (itsmr)

huron<- read.csv("LAKE.TSM”, header=FALSE)
colnames (huron) [1] <- ’'water’

Y_t <- ts(huron$water)

X_t <= Y_t - mean(Y_t)

model <- autofit(X_t,p=0:2,9=0:2)
cat ("Phi:\n”, model$phi)

cat (" Theta:\n”, model$theta)

cat (" Variance:\n”, model$sigma2)
cat ("AICC:\n”, model$aicc)

R code Exa 6.3.1 Test statistic on simulated data

# Page no. 171

# Answer may vary due to randomization
library (forecast)

library(tseries)

phi <- 0.8

sigma2 <- 1

n <- 200

set.seed (123)

X0 <- 0

Xt <- arima.sim(model = list(order = c(1,1,0),

phi), n = n, sd = sigma2)
Xt <- c (X0, Xt)
dXt <- diff (Xt)
Xt_lagl <- lag(Xt, 1)
dXt _lagl <- lag(dXt, 1)
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dXt _lag2 <- lag(dXt, 2)

valid_indices <- 4:200

reg_data <- data.frame(
dXt = dXt[valid_indices - 1],
Xt_lagl = Xt[valid_indices - 1],
dXt_lagl = dXt[valid_indices - 2],
dXt_lag2 = dXt[valid_indices - 3]

)

reg_model <- 1Im(dXt ~ Xt_lagl + dXt_lagl + dXt_lag2,

data = reg_data)

coeff_ Xt_lagl <- summary(reg_model)$coefficients ["Xt
_lagl”, ”Estimate”]

se_Xt_lagl <- summary(reg_model)$coefficients[”"Xt_
lagl”, 7Std. Error”]

test_statistic <- coeff_Xt_lagl / se_Xt_lagl

cat ("Test statistic for unit root:”, test_statistic,

7 \n77 )

R code Exa 6.3.2 Model parameters for overshorts data

# Page No. 173

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library(tseries)

library (forecast)

oshorts= read.csv("OSHORTS.TSM” , header = FALSE)

colnames (oshorts) [1] <- ’overshorts’

Xts <- ts(oshorts$overshorts)

Y_t <- Xts + 4.035

best_model <- auto.arima(Y_t, stepwise = FALSE,
approximation = FALSE)

print (best_model$coef)

print ((-2)*logLik (best_model))
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R code Exa 6.4.1 ARIMA 1 1 0 model on Dow jones utilities index

# Page No. 176

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library(tseries)

dow<- read.csv("DOWJ.TSM” , header = FALSE)

colnames (dow) [1]<- "jones”

dowjones <- ts(dow$jones)

dowjones_diff <- diff(dowjones, lag = 1)

M= c(7dift”, 1)

dowj <- Resid(dowjones ,M)

dowj <- dowj - mean(dowj)

p <-1; g <= 0;

bmodel <- burg(dowj, p)

cat ("Mean squared error” ,bmodel$sigma?2)

print (bmodel)

R code Exa 6.5.2 ACF of seasonal MA model

# Page no. 178

# Answer may vary due to randomization
library (forecast)

set.seed (123)

n <- 500
U_t <- rnorm(n)
lag <- 12

X_t <- U_t

X_t[(lag + 1):n] <- U_t[(lag + 1):n] - 0.4 * U_t[1:(
n - lag)]

acf(X_t, main="ACF”)
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R code Exa 6.5.3 ACF of seasonal AR model

# Page no. 179
# Answer may vary due to randomization
library (forecast)
set.seed (123)
n <- 500
U_t <- rnorm(n)
X_t <- numeric(n)
X_t[1:12] <- U_t[1:12]
for (t in (12 + 1):n) {
X_t[t] <= U_t[t] + 0.7 * X_t[t - 12]
}
acf(X_t, main="ACEF”)

R code Exa 6.5.4 ACF of monthly accidental deaths data

# Page no. 180

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—-21657—7.zip

# Answer may vary due to specific software features.

library (forecast)

library (astsa)

library (itsmr)

deaths= read.csv("DEATHS.TSM” , header = FALSE)

colnames (deaths) [1] <- "deaths”

deaths$months=seq(as.Date(”71973-01-01"), as.Date(”
1978 -12—-01") ,by="month ")

diffl <- diff(deaths$deaths, lag = 12)

Yt <- ts(diff(diffl),frequency = 12)

# Figure 6-17
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acf (Yt, main="ACF”)

best_model <- auto.arima(Yt, seasonal=TRUE, stepwise
= FALSE, approximation = FALSE)

print (best _model)

sarima_model <- Arima(Yt, order = c(0, 1, 1),
seasonal = c(0, 1, 1))

model _params <- sarima_model$coef

print (model _params)

R code Exa 6.5.5 Forecasting monthly accidental deaths

# Page no. 180

# Answer may vary due to specific software features.

library (forecast)

library (itsmr)

deaths= read.csv("DEATHS.TSM” , header = FALSE)

dts <- ts(deaths,frequency = 12)

dts_diff_12 <- diff(dts, lag = 12)

dts_diff_12_1 <- diff(dts_diff_12, lag = 1)

dts_mean_corrected <- dts_diff_12_1 - mean(dts_diff _
12_1)

fit <- arma(dts_mean_corrected,p=0,q=13)

M <= c(7"diff”,12,7diff” ,1)

forecast_values <- forecast(dts,M,fit,h = 6)

R code Exa 6.6.1 GLS based Model parameter estimation

# Page no. 187

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (itsmr)

library (nlme)
oshorts= read.csv("OSHORTS.TSM”, header = FALSE)
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colnames (oshorts) [1] <- "overshorts”

oshorts$time <- seq(l,length(oshorts$overshorts))

ots <- ts(oshorts$overshorts)

ots <- ots-mean(ots)

oshorts$overshorts <- oshorts$overshorts-mean/(
oshorts$overshorts)

a <- autofit(ots, p=0, g=1)

print (a$theta)

cat ("OLS beta:” ,mean(oshorts$overshorts))

acv <- acf(oshorts$overshorts,type = ’'covariance
plot=FALSE)

cat (" Estimator for beta: "7 ,acv$acf[1]/length(ots))

model _formula <- overshorts ~ time

gls_model <- gls(model_formula, data = oshorts)

summary (gls_model)

R code Exa 6.6.2 Model parameters estimation for Lake data

# Page no. 189

library (forecast)

library (nlme)

hudson<- read.csv("LAKE.TSM”, header = FALSE)
colnames (hudson) [1] <- ’level’

hudson$t <- seq(l, length(hudson$level))
ols_model <- 1Im(hudson$level ~ hudson$t)
ols_residuals <- residuals(ols_model)
betal_hat <- coef(ols_model) [1]

cat ("OLS estimate of betal:”, betal_hat, ”\n”)
ar2_model <- Arima(ols_residuals, order=c(2,0,0))
phil_hat <- coef(ar2_model) ["arl”]

phi2_hat <- coef(ar2_model) ["ar2”]

sigma2_hat <- ar2_model$sigma?

cat ("phil:” ,phil_hat)

cat (" phi2:” ,phi2_hat)

cat ("std. dev.:”,sigma2_hat)
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glsEstimate () <- gls(lm(level”t),data = hudson)

R code Exa 6.6.3 Seat belt legislation

# Page no. 189

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (itsmr)

library (nlme)

library (ggplot2)

seat<- read.csv(”SBL.TSM”, header = FALSE)

gt <- read.csv(”SBLDIN.TSM”, header = FALSE)

colnames (gt) [1] <- Y’

colnames (seat) [1] <- "acc”

seat$Years <- seq(as.Date(”1975-01-01"), as.Date(”
1984—-12—-01"), by = "month”)

ggplot(seat, aes(x = Years, y = acc)) +

geom_point (shape = 15, size = 1) +

geom_line () +

labs(title = "Road injuries (Jan 1975 — Dec 1984)”
x = ”"Months”,
y = "Injuries”) +

theme_minimal ()

# Prediction may differ due to specific software
methods

Yt <- ts(seat$acc)

Xt <- Yt-diff(Yt,lag = 12)

data <- data.frame(X = Xt,Y = gt)

gls_model <- gls(X"Y, data = data)

fitted_values <- fitted(gls_model)

seat <-seat[-c(1:12), 1]

seat$fit <- fitted_values

plot (seat$Years,seat$acc, main = " Original Data and
Fitted GLS Line”,

95



27 xlab = "Time”, ylab = "Value”, type = "0-")
28 lines(seat$Years, fitted_values, col = "red”, 1lwd =
2)
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Chapter 7

Time Series Models for
Financial Data

R code Exa 7.2.1 ARCH 1 Series

# Page no. 199

# Answer may vary due to randomization

alpha0 <- 1

alphal <- 0.5

n <- 1000

set.seed (123)

epsilon <- rnorm(n)

sigma2 <- numeric(n)

y <- numeric(n)

for (t in 2:mn) {
sigma2[t] <- alphaO + alphal * y[t-1]"2
y[t] <- sqrt(sigma2[t]) * epsilon[t]

}

plot(y, type = "1”7, main = ”Simulated ARCH(1)
Process”, xlab = "Time”, ylab = ”"Value”)

act (y)
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R code Exa 7.2.2 Fitting GARCH models to stock data

# Page No. 201

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (itsmr)

library(tseries)

library (rugarch)

E1032<- read.csv(”E1032.TSM”)

char_array <- E1032[39:193,]

matches <- gregexpr(” —7[0—9.]4+(?7:\\s*[Ee
1[+—-]7[0-9]+)?", char_array)

stock <- ts(as.numeric(unlist(regmatches(char_array,
matches))))

garch_spec <- ugarchspec(mean.model = list(armaOrder
= ¢c(0,0)),
variance.model = list(model
= "sGARCH”, garchOrder
= c(1,1)))
garch_fit <- ugarchfit(data = stock, spec = garch_
spec)
sigma <- sigma(garch_fit)
par (mfrow=c(2,1))
plot (stock,type = 'l’, col = ’blue’,ylab = "’
percentage returns’)
plot (sigma, type = '1l’, col = ’red’, ylab = '’

Volatility 7)

R code Exa 7.2.3 Fitting ARMA Models Driven by GARCH Noise

# Page No. 203

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

library (itsmr)

# Answer may vary due to software specifications
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library (forecast)
library(tseries)
library (rugarch)
sunspot<- read.csv (”SUNSPOTS.TSM")
colnames (sunspot) [1]<- "spots”
sunspots<- ts(sunspot$spots)
sunspots_mean_corrected <- sunspots - mean(sunspots,
na.rm = TRUE)
fit_arima <- Arima(sunspots_mean_corrected, order =
c(4,0,3))
print (fit_arima)
residuals_arima <- fit_arima$residuals
p <- 1
q <- 1
spec <- ugarchspec(variance.model = list(model = 7
sGARCH” , garchOrder = c(p, q)),
mean.model = list(armaOrder = c
(4, 3), include.mean = TRUE),
distribution.model = "norm”)
fit_garch <- ugarchfit(spec = spec, data = residuals
_arima)
print (fit_garch)
n <- as.numeric(length(sunspots_mean_corrected))

aicc <- (((-2)*(fit_garch@fit$LLH))*(n/(n-p)))+ (((p
+q+2) *(2*n))/(n-p-q-2))

print (paste ("AICC value for the GARCH model:”, aicc)
)

print (" Parameters of the GARCH(1,1) model:")

print (coef (fit_garch))

R code Exa 7.5.1 Brownian motion
# Page no. 213

# Answer may vary due to randomization
T <- 10; n <- 1000; dt <- T / n
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time_points <- seq(0, T, by dt)
set.seed (123)

increments <- rnorm(n, mean

0, sd = sqrt(dt))
B_t <- ¢c(0, cumsum(increments))

plot (time_points, B_t, type = "17,
main = ”Standard Brownian Motion B(t)”,
xlab = "Time”, ylab = "B(t)”,
col = "blue”, 1lwd = 2)

R code Exa 7.5.2 Poisson process

# Page no. 214
lambda <- 5

T <- 10
set.seed (123)
jump_times <- cumsum(rexp (100, rate = lambda))

jump_times <- jump_times[jump_times <= T]
N_t <- seq_along(jump_times)

jump_times <- c(0, jump_times)

N_t <= c(0, N_t)

2 7

plot (jump_times, N_t, type = "s”,
main = " Poisson Process N(t)”,
xlab = ”"Time”, ylab = "N(t)”,
col = "blue”, 1lwd = 2)

R code Exa 7.5.3 Compound Poisson Process

# Page no. 214

lambda <- 5; T <- 10; mu <- 0; sigma <- 1
set.seed (123)

jump_times <- cumsum(rexp (100, rate = lambda))
jump_times <- jump_times[jump_times <= T]
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6 jump_sizes <- rnorm(length(jump_times), mean = mu,
sd = sigma)

7 X_t <- cumsum(jump_sizes)

8 jump_times <- c(0, jump_times)

9 X_t <- c(0, X_t)

10 plot(jump_times, X_t, type = "s”,

11 main = ”Compound Poisson Process X(t)”,
12 xlab = "Time”, ylab = "X(t)”,

13 col = "blue”, 1lwd = 2)
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Chapter 8

Multivariate Time Series

R code Exa 8.1.1 Dow Jones and All Ordinaries Indices

# Page No. 229

2 # Downloading link: https://storage.googleapis.com/

© 00 J O Ut i W

10

11
12
13
14

15

16
17

springer —extras/zip/2002/978—-0—387—21657—7.zip
library (forecast)
library(tseries)
dow<- read.csv(”DJAO2.TSM”, header = FALSE)
pc <- read.csv("DJAOPC2.TSM”, header = FALSE)
colnames (pc) [1]<- "stocks”
char _array <- dowl[,1]
matches <- gregexpr ("\\b\\d{3,}\\b”, char_array)
stock <- as.numeric(unlist(regmatches(char_array,
matches)))
dowjones <- ts(stock[c(TRUE, FALSE)])
Aus <- ts(stock[c(FALSE, TRUE)])
index <- seq_along(dowjones)

plot (index, dowjones, type = 'l’, col = ’blue’, 1lwd
= 2, ylim = range(c(dowjones ,1000)),
xlab = ’'Index’, ylab = ’Values’, main = ’Dow
jones and Australian ordinary ’)
lines (index, Aus, col = ’'red’, lwd = 2)
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pcs <- separate(pc, col = 1, into = c(’dow”, "aus”),
sep = "\\s+")
dowjonesl <- ts(as.numeric(pcs$dow))
Ausl <- ts(as.numeric(pcs$aus))
acf (dowjonesl, main = 7 Series 17)
acf (Ausl, main = 7 Series 27)
ccfl <- ccf(dowjonesl, Ausl,plot = FALSE)
positive_lagl <- ccfl$lag >= 0
plot(ccfl$laglpositive_lagl], ccfl$acf[positive_lagl
1, type = "h”,
main = "7 Series 1 * Series 27,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(Ausl,dowjonesl ,plot = FALSE)
positive_lag2 <- ccf2$lag >= 0
plot (ccf2$8lag[positive_lag2], ccf2$acf[positive_lag?2
1, type = "h”,
main = " Series 2 * Series 17,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
plot (lag(dowjonesl, -1), Ausl, main=" Scatterplot”,
xlab="Lagged TS1”, ylab="TS2”, pch=19)

R code Exa 8.1.2 Sales with a leading indicator

# Page No. 230

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—7.zip

library (forecast)

library(tseries)

sales<- read.delim (”SALES.TSM”, header = FALSE)

leads<- read.delim("LEAD.TSM”, header = FALSE)

colnames (sales) [1]<- 7 sale”

colnames (leads) [1]<- 7"lead”

1s2 <- <cbind(sales, leads)
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lst <- ts(1ls2)

1st <- diff (1lst)

par (mfrow = c(2, 2))

acf(lst[, 2], main = 7 Series 17)
acf(lst[, 1], main = 7 Series 27)

ccfl <- ccf(lst[, 1], 1st[, 2],plot

positive_lagl <- ccfl$lag >= 0

plot (ccfl$lag[positive_lagl], ccfl$acf[positive_lagl

], type - ”h”,

main = 7 Series 2 * Series 17,

xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(lst[,2],1st[,1],plot
positive_lag2 <- ccf2$lag >= 0

plot (ccf2$lag[positive_lag2], ccf2$acf[positive_lag?

] s type = 77h77 s

main = 7 Series 1 * Series 27,

xlab = "Lag”, ylab = "CCF”)
abline(h = 0)

FALSE)

FALSE)

R code Exa 8.3.1 Sample correlations

# Page No. 239

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)
library(tseries)

E731 <- read.delim(”E731A.TSM”,
Ets <- ts(E731)

par (mfrow = c(2, 2))

acf(Ets[, 2], main = 7 Series 17)
acf(Ets[, 1], main = 7 Series 27)

ccfl <- ccf(Ets[, 1], Ets[, 2],plot

positive_lagl <- ccfl$lag >= 0

plot (ccfl$lag[positive_lagl], ccfl$acf[positive_lagl
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1, type = 7"h”,
main = " Series 1 * Series 27,
xlab = "Lag”, ylab = "CCF”)
abline(h = 0)
ccf2 <- ccf(Ets[,2] ,Ets[,1],plot = FALSE)
positive_lag2 <- ccf2$lag >= O
plot(ccf2$lagl[positive_lag2], ccf2%acf[positive_lag?2
1, type = 7h7,
main = " Series 2 * Series 17,
xlab = ”"Lag”, ylab = "CCF”)
abline(h = 0)

R code Exa 8.6.1 Multivariate models fitted on stock data

# Page No. 249

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—387—21657—T7.zip

# Answer may vary to unspecified function in problem

library (tidyr)

library(vars)

pc <- read.csv("DJAOPC2.TSM”, header = FALSE)

pcs <- separate(pc, col = 1, into = c("dow”, "aus’),
sep = "\\s+")

pcs$dow <- as.numeric(pcs$dow)

pcs$aus <- as.numeric(pcs$aus)

pcs_ts <- ts(pcs)

var_model <- VAR(pcs_ts,p=1,type = "none”

summary (var _model)

R code Exa 8.6.2 Multivariate models fitted on sales data

# Page No. 249
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# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

library(vars)

library (tidyr)

library(stringr)

library (dplyr)

ls <- read.csv(”LS2.TSM” ,header = FALSE)

colnames (1s) [1]<- 7117

1s$11 <- trimws(1ls$ll,which = "left”)

lts <- separate(ls, col = 11, into = c(’1d”, "sales”
), sep = "\\s+")

1ts$1ld <- as.numeric(lts$ld)

lts$sales <- as.numeric(lts$sales)

lts <- ts(lts)

ltds <- diff(lts, lag = 1)

lag<-VARselect (lts,lag.max=10)

optimal <- lag$selection

estim <- VAR(ltds,p=5,type = "none”)

summary (estim)

estim$varresult

R code Exa 8.6.3 VAR 1 model on stock data

# Page No. 251

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (tidyr)

library (itsmr)

library(vars)

pc <- read.csv("DJAOPC2.TSM”, header = FALSE)

pcs <- separate(pc, col = 1, into = c("dow”, "aus’),
sep = ”\\S—f—”)

pcs$dow <- as.numeric(pcs$dow)

pcs$aus <- as.numeric(pcs$aus)

pcs_ts <- ts(pcs)
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var_model <- VAR(pcs_ts,p=1,type = "none”)

summary (var _model)

k <- 9

n <- length(pcs_ts)

log_likelihood <- LogLik(var_model)

aicc <- -2 * log_likelihood + 2 * k + (2 * k x (k +
1)) / (n - k - 1)

arm <- autofit(ts(pcs$aus),p=0:2,q9=0)

print (arm)
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Chapter 9

State Space Models

R code Exa 9.2.1 Random walk plus noise model

# Page no.261

# Answer varies due to randomness
set.seed (46)

n <- 100

sigma_v <- 4

sigma_w <- 8

M <- cumsum(rnorm(n, mean = 0, sd = sqrt(sigma_w)))
W <- rnorm(n, mean = 0, sd = sqrt(sigma_v))
Y <- M + W
plot(l:n, M, type = 717, col = "blue”, xlab = "Time”
, ylab = "Value”,
main = "Random Walk Plus Noise Model”)
points(l:n, Y, pch = 15, col = "red”)

acf (diff(Y), lag.max = 20)

R code Exa 9.5.2 International airline passengers

# Page No. 278
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# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—0—-387—21657—T7.zip

# Adequate data not provided in example

library (ggplot2)

library (MASS)

library (KFAS)

airpass <- read.csv(7AIRPASS.TSM”, header = FALSE)

colnames (airpass) [1] <- ”"pass”

ggplot (airpass, aes(x = seq(as.Date(”71949—-01-01"),
as.Date(”71960—-12—-01"), by = "month”), y = pass))
+
geom_point () +
geom_line () +

labs(title = 7 Air passengers (Jan 1949 — Dec 1960)
x = "Time” ,
y = 7" Passengers”) +

theme_minimal ()
pass <- ts(airpass$pass)

R code Exa 9.8.3 Polio in the USA

# Page No. 292

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (ggplot2)

library (dplyr)

polio <- read.csv(”POLIO.TSM”, header = FALSE)

colnames (polio) [1] <- "pol”

ggplot (polio, aes(x = seq(as.Date(”1970-01-01"), as.
Date (71983—12—01"), by = "month”), y = pol)) +
geom_point () +
geom_line () +
labs(title = "Polio in US (Jan 1970 — Dec 1983)”7,

x = "Time” ,
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y = "Polio cases”) +
theme_minimal ()

polio$Month <- 1:length(polio$pol)
polio <- polio %>%

mutate (
t = Month,
ul = 1,
u2 =t / 1000,
u3 = cos(2 *x pi *x t / 12),
ud = sin(2 * pi *x t / 12),
ub = cos(2 * pi *x t / 6),
ué = sin(2 * pi * t / 6)

)

model <- 1m(pol ~ ul + u2 + u3 + u4 + ub + u6, data
= polio)

polio$Trend <- fitted(model)
ggplot(polio, aes(x = Month)) +

geom_point (aes(y = pol, color = ”Actual Cases”)) +
geom_line (aes(y = Trend, color = "Trend Estimate”)
) +
labs (
title = "Trend Estimate for Monthly U.S. Polio
Cases”,
x = "Month” ,
y = "Number of Cases”,
color = " Legend”
) +
scale_color_manual (values = c(” Actual Cases” =7
blue”, ”"Trend Estimate” = "red”)) +

theme_minimal ()

R code Exa 9.8.7 Goals Scored by England Against Scotland

1 # Page No. 299
2 # Downloading link: https://storage.googleapis.com/
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springer —extras/zip/2002/978—-0—-387—-21657—7.zip
# Answer varies due to inadequate data
library (ggplot2)
library (tidyr)
library (itsmr)
goals <- read.table(”GOALS.TSM”, header = FALSE)
colnames (goals) [1] <- " goal”
colnames (goals) [2] <-"Year”
# Figure 9-8
ggplot (goals, aes(x = Year, y = goal)) +
geom_point () +
geom_line(col="blue’) +
labs(title = " Goals by England”,
x = "Years”,
y = "Goals”) +
theme _minimal ()
# Figure 9-9
ggplot (na.omit (goals), aes(x = factor(goal))) +
geom_bar () +
xlab (" Goals”) +
ylab (7 Count”) +
ggtitle (" Histogram of Goals”) +
theme _minimal ()

data <- na.omit(goals)
delta_hat <- 0.844
alpha_0 <- 0.154
lambda_0 <- delta_hat / (1 - delta_hat)
n <- nrow(data)
alpha <- numeric(m);lambda <- numeric(n);pred <-
numeric (n)
alpha[1] <- alpha_o0
lambda[1] <- lambda_0
for (t in 2:n) {
alpha[t] <- alphal[t-1] + delta_hat * (data$goall[t
-1] - alphalt-1]1)
lambda[t] <- lambdal[t-1] + delta_hat * (1 - lambda
[t-11)
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for

Year ,

Goals

pred[t] <- alphalt] / (1 + lambdalt])
}
ggplot(data.frame(Time = data$Year, pred
aes(x = Time, y = pred)) +
geom_line(color = "blue”) +
geom_point (data = data, aes(x
color = "red”) +
xlab(” Year”) +
ylab(” Goals”) +
ggtitle ("One—Step Predictors
theme_minimal ()

= pred),

y = goal),

Data”) +
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Chapter 10

Forecasting Techniques

R code Exa 10.1.1 Predicted deaths by ARAR algorithm

1 # Page No. 312
2 # Downloading link: https://storage.googleapis.com/

O N O Ut i W

N

W

springer —extras/zip/2002/978—-0—387—21657—7.zip
library (itsmr)
library (forecast)
deaths <- read.csv(”DEATHS.TSM”, header = FALSE)
colnames (deaths) [1]<- " death”
dts <- ts(deaths$death)
arar_model <- arar(dts,h=24,o0pt=2)

R code Exa 10.2.1 Holt Winters non seasonal forecast

# Page No. 316

# Answer may vary due to the nature of forecast
function .

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—-387—21657—7.zip

library (forecast)
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deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

colnames (deaths) [1]<- 7 death”

dts <- ts(deaths$death, freq=12, start = 1973)

hw_model <- HoltWinters(dts, gamma = FALSE)

forecast_values <- forecast::forecast (hw_model, n.
steps=2)

plot (forecast_values, main="Holt—Winters Forecast”,
xlab="Time”, ylab="Values”)

lines(dts, col="blue”)

R code Exa 10.3.1 Holt Winters seasonal forecast

# Page No. 316

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (forecast)

deaths <- read.delim ("DEATHS.TSM”, header = FALSE)

colnames (deaths) [1]<- 7 death”

dts <- ts(deaths$death, freq=12, start = 1973)

hw_model <- HoltWinters (dts)

forecast_values <- forecast::forecast (hw_model, h
=24)

plot (forecast_values, main="Holt—Winters Forecast”,
xlab="Time”, ylab="Values”)

lines(dts, col="blue”)
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Chapter 11

Further Topics

R code Exa 11.4.1 Annual Minimum Water Levels in the Nile

# Page No. 340

# Downloading link: https://storage.googleapis.com/
springer —extras/zip/2002/978—-0—387—21657—7.zip

library (ggplot2)

nile <- read.csv(”NILE.TSM”, header = FALSE)

colnames(nile) [1]<- "water”
plot(nile$water ,xlab="time” ,ylab="water level” ,main=
"Nile river”,type = '17)

acf(nile$water ,main="ACF”)

best_model <- auto.arima(nile$water, stepwise =
FALSE, ic="aicc”, approximation = FALSE)

print (best_model$aicc)

best_arfima <-arfima(nile$water ,model = best_model)

print (best_arfima$aicc)
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