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Chapter 1

Introduction

R code Exa 1.1.1 Australian wine sales

1 # Page No . 2
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 wine_data <- read.delim(”WINE.TSM”, header = FALSE)

5 colnames(wine_data)[1] <- ” S a l e s ”
6 ggplot(wine_data , aes(x = seq(as.Date(”1980−01−01”),

as.Date(”1991−10−01”), by = ”month”), y = Sales)

) +

7 geom_point() +

8 geom_line() +

9 labs(title = ” Monthly Wine S a l e s ( Jan 1980 − Oct
1991) ”,

10 x = ”Months”,
11 y = ” S a l e s ”) +

12 theme_minimal ()

R code Exa 1.1.3 Accidental deaths
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1 # Page No . 2
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” dea th s ”
6 ggplot(deaths , aes(x = seq(as.Date(”1973−01−01”), as

.Date(”1978−12−01”), by = ”month”), y = deaths))

+

7 geom_point(shape = 15, size = 1) +

8 geom_line() +

9 labs(title = ” Deaths ( Jan 1973 − Nov 1978) ”,
10 x = ”Months”,
11 y = ” Deaths ”) +

12 theme_minimal ()

R code Exa 1.1.4 Signal Detection Problem

1 # Page No . 3
2 set.seed (123)

3 t <- 1:200

4 N <- rnorm (200, mean = 0, sd = 0.5)

5 X <- cos(t/10)

6 plot(t, X, type = ” l ”, col = ” b lue ”, xlab = ” t ”,
ylab = ”X”, main = ” S i g n a l p l o t ”,lwd=2)

7 points(t, N, pch = 16, col = ” b l a c k ”, bg = ” b l a c k ”,
cex = 0.5)

R code Exa 1.1.5 Population of the USA

1 # Page No . 4
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
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3 library(ggplot2)

4 uspop= read.csv(”USPOP.TSM”)
5 names(uspop)[names(uspop) == ” X3929214 ”] <- ”

p o p u l a t i o n ”
6 start_year =1790

7 num_repeated =20

8 interval =10

9 ggplot(uspop , aes(x=seq_len(num_repeated) * interval

+ start_year , y = population)) +

10 geom_point() +

11 geom_line() +

12 labs(title = ” Popu l a t i on ”,
13 x = ” Years ”,
14 y = ”US p o p u l a t i o n ”) +

15 theme_minimal ()

R code Exa 1.1.6 Strikes in USA

1 # Page No . 4
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 strike <- read.delim(”STRIKES .TSM”, header = FALSE)

5 colnames(strike)[1] <- ” S t r i k e s ”
6 start_year =1951

7 end_year =1980

8 ggplot(strike , aes(x=seq(start_year ,end_year), y =

Strikes)) +

9 geom_point() +

10 geom_line() +

11 labs(title = ” S t r i k e s i n US”,
12 x = ” Years ”,
13 y = ” S t r i k e s ”) +

14 theme_minimal ()
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R code Exa 1.3.3 Random walk

1 # Page no . 7
2 set.seed (123)

3 t <- 200

4 steps <- rnorm(t)

5 random_walk <- cumsum(steps)

6 plot (0:t, c(0, random_walk), type = ” l ”, col = ” b lue
”,

7 xlab = ”Time”, ylab = ” Value ”, main = ” Simple
Random Walk”)

8 points (0:t, c(0, random_walk), col = ” red ”, pch = 1)

R code Exa 1.3.4 Regression on population data

1 # Page No . 8
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 uspop= read.delim(”USPOP.TSM”, header = FALSE)

5 colnames(uspop)[1] <- ” p o p u l a t i o n ”
6 start_year =1790

7 num_repeated =21

8 interval =10

9 uspop$years <- seq_len(num_repeated) * interval+

start_year

10 fit <-lm(population ~ poly(years ,2,raw = TRUE), data

= uspop)

11 ggplot(uspop , aes(x=years , y=population)) +

12 geom_point() +

13 geom_smooth(method = ”lm”, formula = y ~poly(x,2,

raw=TRUE), se = FALSE) +
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14 labs(title = ”US Popu la t i on ”,
15 x = ” Years ”,
16 y = ” Popu l a t i on ”) +

17 theme_minimal ()

R code Exa 1.3.5 Level of Lake Huron

1 # Page No . 9
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 hudson= read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(hudson)[1] <- ” l e v e l ”
6 start_year =1875

7 end_year =1972

8 hudson$years <-(seq(start_year ,end_year))

9 fit <-lm(level~years ,data = hudson)

10 residuals <- resid(fit)

11 residual_df <- data.frame(years = hudson$years ,

residuals = residuals)

12 par(mfrow=c(1,2))

13 # Figur e 1−9
14 plot(hudson$years , hudson$level , type = ”o”,
15 main = ” Lake Hudson”, xlab = ” Years ”, ylab = ”

Water l e v e l s ”, pch = 19)

16 abline(fit , col = ” b lue ”,lw=2)
17 # Figur e 1−10
18 plot(residual_df$years ,residual_df$residuals , type =

”o”,pch = 19,

19 xlab = ” Years ”, ylab = ” R e s i d u a l s ”, main = ”
R e s i d u a l s p l o t ”)

20 abline(h = 0, col = ” b lue ”, lw = 2)

21 print(coef(fit))
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R code Exa 1.3.6 Harmonic regression on accidental deaths

1 # Page No . 11
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” dea th s ”
6 n <- length(deaths$deaths)

7 time <- 1:n

8 f1 <- n / 12

9 f2 <- n / 6

10 fit <- lm(deaths$deaths ~ sin(2 * pi * time / f1) +

cos(2 * pi * time / f1) +

11 sin(2 * pi * time / f2) + cos(2 * pi *

time / f2))

12 fitted_values <- predict(fit)

13 plot(time , deaths$deaths , type = ”p”, col = ” b l a c k ”,
pch = 15, xlab = ”Time”, ylab = ” Value ”,

14 main = ” Harmonic F i t ”)
15 lines(time , fitted_values , col = ” b lue ”, lw =2)

R code Exa 1.4.6 Random noise

1 # Page No . 16
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 set.seed (123)

5 noise <- rnorm (200, mean = 0, sd = 1)

6 df <- data.frame(Index = 1:200 , Noise = noise)

7 ggplot(df, aes(x = Index , y = Noise)) +

12



8 geom_point()+

9 geom_line() +

10 labs(x = ” Index ”, y = ” No i s e ”, title = ” S imula ted
N( 0 , 1 ) No i s e ”)+

11 theme_minimal ()

12 acf_result <- acf(noise , plot = FALSE)

13 n <- length(noise)

14 bounds <- 1.96 / sqrt(n)

15 acf_df <- data.frame(Lag = acf_result$lag , ACF = acf

_result$acf)

16 ggplot(acf_df, aes(x = Lag , y = ACF)) +

17 geom_hline(yintercept = c(-bounds , bounds)) +

18 geom_hline(yintercept = 0) +

19 geom_segment(aes(xend = Lag , yend = 0)) +

20 labs(x = ”Lag”, y = ”ACF”, title = ” Sample
A u t o c o r r e l a t i o n Funct ion (ACF) ”) +

21 ylim(-1, 1)+

22 theme_minimal ()

R code Exa 1.5.1 Moving average of strikes

1 # Page No . 22
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(zoo)

5 strike <- read.csv(”STRIKES .TSM”, header =FALSE)

6 colnames(strike)[1] <- ” S t r i k e s ”
7 start_year =1951

8 end_year =1980

9 window_size <- 5

10 strike$Moving_Avg <- rollmean(strike$Strikes , k =

window_size , fill = NA)

11 strike$residuals <- strike$Strikes -strike$Moving_Avg

12 # Figur e 1−18
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13 ggplot ()+

14 geom_line(data=strike , aes(x = seq(start_year ,end_

year),y=Moving_Avg))+

15 geom_point(data=strike , aes(x = seq(start_year ,end

_year),y=strike$Strikes))+

16 labs(x = ” Year ”, y = ” S t r i k e s ”, title = ” S t r i k e s
Data with Moving Average ”)+

17 theme_minimal ()

18 # Figur e 1−19
19 ggplot(data=strike , aes(x = seq(start_year ,end_year)

,y=residuals))+

20 geom_line()+

21 geom_point()+

22 labs(x = ” Year ”, y = ” S t r i k e s ”, title = ” S t r i k e s
Data r e s i d u a l s ”)+

23 theme_minimal ()

R code Exa 1.5.2 Smooth exponential and low pass filter

1 # Page No . 24
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 strike <- read.csv(”STRIKES .TSM”, header = FALSE)

5 colnames(strike)[1] <- ” S t r i k e s ”
6 # Figur e 1−21
7 plot(smooth.exp(ts(strike$Strikes) ,0.4))

8 lines(smooth.exp(ts(strike$Strikes) ,0.4))

9 # Figur e 1−22
10 plot(smooth.fft(ts(strike$Strikes) ,0.4))

11 lines(smooth.fft(ts(strike$Strikes) ,0.4))

R code Exa 1.5.3 Differenced series
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1 # Page No . 11
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(pracma)

5 library(dplyr)

6 uspop= read.delim(”USPOP.TSM”, header = FALSE)

7 colnames(uspop)[1] <- ” p o p u l a t i o n ”
8 start_year =1790

9 num_repeated =21

10 interval =10

11 uspop$years <- seq_len(num_repeated) * interval+

start_year

12 diff2 <- diff(diff(uspop$population))

13 uspop <- slice(uspop , -(1:2))

14 uspop$diff2 <- diff2

15 ggplot(uspop , aes(x = years , y = diff2)) +

16 geom_point()+

17 geom_line() +

18 labs(title = ” Second−Order D i f f e r e n c e s o f
Popu l a t i on Data”,

19 x = ” Years ”, y = ” Second−Order D i f f e r e n c e s ”)+
20 theme_minimal ()

R code Exa 1.5.4 Deseasonalization and seasonal component

1 # Page No . 28
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(pracma)

5 deaths <-read.delim(”DEATHS.TSM”, header =FALSE)

6 deaths$years <- seq(as.Date(”1973−01−01”), as.Date(”
1978−12−01”), by = ”month”)

7 period <- 12

15



8 colnames(deaths)[1] <- ” dea th s ”
9 decomposition <- decompose(ts(deaths$deaths ,

frequency = period))

10 seasonal_component <- decomposition$seasonal

11 deseasonalized_data <- deaths$deaths - seasonal_

component

12 deseasonalized_df <- data.frame(years = deaths$years

, deseasonalized_deaths = deseasonalized_data)

13 seasonal_component_df <- data.frame(years = deaths$

years , seasonal_component = seasonal_component)

14 # Figur e 1−24
15 ggplot(deseasonalized_df, aes(x = years , y =

deseasonalized_deaths)) +

16 geom_line(color = ” b lue ”) +

17 geom_point()+

18 labs(x = ” Years ”, y = ” D e s e a s o n a l i z e d Deaths ”,
title = ” D e s e a s o n a l i z e d Deaths ”) +

19 theme_minimal ()

20 # Figur e 1−25
21 ggplot(seasonal_component_df , aes(x = years , y =

seasonal_component)) +

22 geom_line(color = ” red ”) +

23 geom_point()+

24 labs(x = ” Years ”, y = ” S e a s o n a l Component”, title

= ” S e a s o n a l Component”) +

25 theme_minimal ()

R code Exa 1.5.5 Estimation of seasonal component

1 # Page No . 28
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(dplyr)

5 deaths= read.delim(”DEATHS.TSM”, header = FALSE)
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6 colnames(deaths)[1] <- ” dea th s ”
7 deaths$months=seq(as.Date(”1973−01−01”), as.Date(”

1978−12−01”),by= ’ month ’ )
8 diff1 <- diff(deaths$deaths , lag = 12)

9 deaths <- slice(deaths , -(1:12))

10 deaths$diff1 <- diff1

11 # Figur e 1−26
12 ggplot(deaths , aes(x = months , y = diff1)) +

13 geom_point()+

14 geom_line() +

15 labs(title = ” F i r s t−Order D i f f e r e n c e s o f dea th s
Data ”,

16 x = ” months ”, y = ” F i r s t−Order D i f f e r e n c e s ”)+
17 theme_minimal ()

18 # Figur e 1−27
19 diff2 <- diff(deaths$diff1)

20 deaths <- slice(deaths ,-1)

21 deaths$diff2 <- diff2

22 ggplot(deaths , aes(x = months , y = diff2)) +

23 geom_point()+

24 geom_line() +

25 labs(title = ” Second−Order D i f f e r e n c e s o f dea th s
Data ”,

26 x = ” months ”, y = ” Second−Order D i f f e r e n c e s ”)
+

27 theme_minimal ()

R code Exa 1.6.1 ACF on signal data

1 # Page No . 33
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 signal <- read.delim(”SIGNAL .TSM”, header = FALSE)

4 colnames(signal)[1] <- ” s i g n a l s ”
5 acf_values <- acf(signal$signals , plot = FALSE)$acf
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6 n <- length(signal$signals)

7 conf_bound <- 1.96 / sqrt(n)

8 plot(acf_values , ylim = c(-conf_bound , conf_bound),

9 main = ” Sample A u t o c o r r e l a t i o n Funct ion (ACF) ”,
10 ylab = ”ACF”, xlab = ”Lag”, type = ”h”)
11 abline(h = c(-conf_bound , conf_bound), col = ” red ”,

lty = 2)

12 abline(h = 0, lty = 2)
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Chapter 2

Stationary Processes

R code Exa 2.4.3 MA1 Process

1 # Page No . 53
2 n <- 200

3 set.seed (123)

4 Z <- rnorm(n)

5 X <- numeric(n)

6 X[1] <- Z[1]

7 for (i in 2:n) {

8 X[i] <- Z[i] - 0.8 * Z[i-1]

9 }

10 acf_values <- acf(X, plot = FALSE)$acf

11 plot (0:40, acf_values [1:41] , type = ”h”, ylim = c

(-1, 1),

12 xlab = ”Lag”, ylab = ”ACF”, main = ” Sample
A u t o c o r r e l a t i o n Funct ion f o r MA( 1 ) ”)

13 abline(h = c(-1.96/sqrt(n), 1.96/sqrt(n)), col = ”
red ”, lty = 2)

14 abline(h = 0, col = ” b lue ”, lty = 1)

R code Exa 2.4.4 AR1 Process
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1 #. .
2 # Page No . 54
3 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
4 hudson= read.csv(”LAKE.TSM”)
5 names(hudson)[names(hudson) == ”X10 . 3 8 ”] <- ” l e v e l ”
6 start_year =1876

7 end_year =1972

8 hudson$years <- seq(start_year ,end_year)

9 fit <-lm(level~years ,data = hudson)

10 residuals <- resid(fit)

11 residuals_df <- data.frame(years = hudson$years ,

residuals = residuals)

12 n <- nrow(residuals_df)

13 phi <- 0.791

14 model_acf <- function(i) {

15 phi^i

16 }

17 confidence_bounds <- function(i) {

18 1.96 * (n^( -0.5)) * sqrt (((1 - (phi^(2*i))) * (1 +

(phi^2))) / (1 - (phi^2)))

19 }

20 acf_values <- acf(residuals_df$residuals , plot =

FALSE)$acf

21 upper_conf_bounds <- sapply (1:40, function(i) {

22 confidence_bounds(i) + (phi^i)

23 })

24 lower_conf_bounds <- sapply (1:40, function(i) {

25 (phi^i) - confidence_bounds(i)

26 })

27 plot (0:40 , acf_values [1:41] , type = ”h”, ylim = c

(-1, 1),

28 xlab = ”Lag”, ylab = ”ACF”, main = ” Sample
A u t o c o r r e l a t i o n Funct ion o f R e s i d u a l s (AR( 1 )
) ”)

29 lines (1:40, upper_conf_bounds , col = ” red ”, lty = 2)

30 lines (1:40, lower_conf_bounds , col = ” red ”, lty = 2)

31
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32 # Plo t the model ACF
33 points (1:40, sapply (1:40 , model_acf), type = ”b”,

col = ” b lue ”)

R code Exa 2.5.5 Durbin Levinson and innovations algorithm

1 # Page no . 64
2 compute_autocovariance <- function(phi) {

3 gamma_0 <- 1 + phi^2

4 gamma_1 <- -phi

5 return(list(gamma_0 = gamma_0, gamma_1 = gamma_1))

6 }

7 innovation_algorithm <- function(gamma) {

8 theta_11 <- -gamma$gamma_1 / gamma$gamma_0

9 return(list(theta_11 = theta_11))

10 }

11 durbin_levinson_algorithm <- function(gamma) {

12 phi_11 <- gamma$gamma_1 / gamma$gamma_0

13 sigma_1_squared <- gamma$gamma_0 * (1 - phi_11^2)

14 return(list(phi_11 = phi_11, sigma_1_squared =

sigma_1_squared))

15 }

16 phi <- 0.9

17 gamma <- compute_autocovariance(phi)

18 theta <- innovation_algorithm(gamma)

19 phi_result <- durbin_levinson_algorithm(gamma)

20 cat(paste0(” t h e t a _11 = ”, theta$theta_11, ”\n”))
21 cat(paste0(” ph i _11 = ”, phi_result$phi_11, ”\n”))
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Chapter 3

ARMA Models

R code Exa 3.1.1 ARMA 1 1

1 # Page no . 7 6
2 ar_params <- c(0.5)

3 ma_params <- c(0.4)

4 is_invertible <- function(ma_params) {

5 roots <- polyroot(c(1, ma_params))

6 all(abs(roots) > 1)

7 }

8

9 invertibility_status <- is_invertible(ma_params)

10 invertibility_status

R code Exa 3.1.2 AR2 Process

1 # Page no . 7 6
2 # C o e f f i c i e n t s o f AR( 2 ) model
3 phi1 <- 0.7

4 phi2 <- -0.1

5 poly_coefs <- c(1, -phi1 , -phi2)
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6 roots <- polyroot(poly_coefs)

7 cat(” Roots o f the c h a r a c t e r i s t i c po lynomia l ( z e r o s
o f the AR( 2 ) p r o c e s s ) : \ n”)

8 cat(roots , ”\n”)

R code Exa 3.1.3 ARMA 2 1

1 # Page no . 77
2 ar_params <- c(-0.75, 0.5625)

3 ma_params <- c(1.25)

4 is_invertible <- function(ma_params) {

5 roots <- polyroot(c(1, ma_params))

6 all(abs(roots) > 1)

7 }

8 invertibility_status <- is_invertible(ma_params)

9 invertibility_status

R code Exa 3.2.4 General AR2 process

1 # Page No . 80
2 # Figur e 3−1
3 library(stats)

4 xi1 <- 2

5 xi2 <- 5

6 phi1 <- 1/xi1 + 1/xi2

7 phi2 <- -(1/xi1) * (1/xi2)

8 set.seed (123)

9 n <- 1000

10 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

11 acf(ar_process , main = ” Sample ACF o f AR( 2 ) P r o c e s s ”
)

12 # Figur e 3−2
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13 xi1 <- 10/9

14 xi2 <- 2

15 phi1 <- 1/xi1 + 1/xi2

16 phi2 <- -(1/xi1) * (1/xi2)

17 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

18 acf(ar_process , main = ” Sample ACF o f AR( 2 ) P r o c e s s ”
)

19 # Figur e 3−3
20 xi1 <- -10/9

21 xi2 <- 2

22 phi1 <- 1/xi1 + 1/xi2

23 phi2 <- -(1/xi1) * (1/xi2)

24 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

25 acf(ar_process , main = ” Sample ACF o f AR( 2 ) P r o c e s s ”
)

26

27 # Figur e 3−4
28 xi1 <- complex(real = 2/3, imaginary = 2*sqrt (3)/3)

29 xi2 <- complex(real = 2/3, imaginary = -2*sqrt (3)/3)

30 phi1 <- Re(1/xi1 + 1/xi2)

31 phi2 <- Re(-(1/xi1) * (1/xi2))

32 ar_process <- arima.sim(model = list(ar = c(phi1 ,

phi2)), n = n)

33 acf(ar_process , main = ” Sample ACF o f AR( 2 ) P r o c e s s ”
)

R code Exa 3.2.8 Overshorts series

1 # Page No . 84
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 oshorts <- read.csv(”OSHORTS.TSM”, header =FALSE)

4 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
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5 oshorts$days <- seq(1,nrow(oshorts))

6 # Figur e 3−5
7 plot(oshorts$days ,oshorts$overshorts , xlab = ”Days”,

ylab = ” O v e r s h o r t s ”,
8 type = ’ o ’ , col = ” b lue ”)
9 abline(h=0)

10 # Figur e 3−6
11 acf_result <- acf(oshorts$overshorts , plot = FALSE)

12 n <- length(oshorts)

13 bounds <- 1.96 * ((1 + 2 * acf_result$acf [2]^2) ^(1/

2)) / sqrt(n)

14 plot(acf_result , main = ” Sample ACF with Bounds”)
15 print(mean(oshorts$overshorts))

16 acvf <-acf(oshorts$overshorts , plot= FALSE , type = ’
c o v a r i a n c e ’ )

17 print(acvf$acf [1])

18 print(acvf$acf [2])

R code Exa 3.2.9 The sunspot numbers

1 # Page No . 86
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 spots <- read.csv(”SUNSPOTS .TSM”,header = FALSE)

5 colnames(spots)[1] <- ” s u n s p o t s ”
6 pacf_result <- pacf(spots , plot = FALSE)

7 bounds <- 1.96 / sqrt (100)

8 plot(pacf_result , main = ” Sample PACF”)
9 print(pacf_result)

10 acvf <-acf(spots$sunspots , plot= FALSE , type = ’
c o v a r i a n c e ’ )

11 print(acvf$acf [1])

12 print(acvf$acf [2])

13 print(acvf$acf [3])
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R code Exa 3.3.4 Numerical prediction of ARMA 2 3

1 # Page no . 90
2 # Answer may vary due to randomiza t i on i n s i m u l a t i o n
3 library(forecast)

4 ar_params <- c(1,-0.24)

5 ma_params <- c(0.4, 0.2, 0.1)

6 set.seed (46)

7 n <- 10

8 arma_process <- arima.sim(model = list(ar = ar_

params , ma = ma_params), n = n)

9 print(arma_process)

10 acf_values <- acf(arma_process , type=” c o v a r i a n c e ”,
plot=FALSE)$acf

11 gamma_0 <- acf_values [1]

12 gamma_1 <- acf_values [2]

13 gamma_2 <- acf_values [3]

14 cat(”gamma_0 =”, gamma_0, ”\n”)
15 cat(”gamma_1 =”, gamma_1, ”\n”)
16 cat(”gamma_2 =”, gamma_2, ”\n”)
17 innovations_algorithm <- function(arma_process , n_

steps) {

18 n <- length(arma_process)

19 predictions <- numeric(n_steps)

20 e <- numeric(n + n_steps)

21 phi <- numeric(n + n_steps)

22 theta <- numeric(n + n_steps)

23 for (i in 1:n_steps) {

24 predictions[i] <- sum(ar_params * arma_process [(

n-i+1):(n-i+2)])

25 + sum(ma_params * e[(n-i+1):(n-i+3)])

26 e[n+i] <- arma_process[i] - predictions[i]

27 }

28 return(predictions)
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29 }

30 predictions <- innovations_algorithm(arma_process ,

10)

31 print(predictions)

R code Exa 3.3.5 h step prediction of ARMA

1 # Page no . 91
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 ar_params <- c(1,-0.24)

5 ma_params <- c(0.4, 0.2, 0.1)

6 E334 <- read.delim(”E334 .TSM”, header = FALSE)

7 colnames(E334)[1] <- ”E”
8 Ets <- ts(E334$E)

9 arma_model <- Arima(Ets , order=c(2, 0, 3))

10 forecasts <- forecast(arma_model , h=10)

11 cat(”\ nFor e ca s t ed v a l u e s f o r the next 10 s t e p s : \ n”)
12 print(forecasts$fitted)
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Chapter 4

Spectral Analysis

R code Exa 4.1.2 Linear combination of sinusoids

1 # Page no . 101
2 # Answer may vary due to randomiza t i on
3 library(ggplot2)

4 k <- 2

5 omega <- seq(pi/4, pi/6, length.out = k)

6 sigma2 <- 9

7 t <- 1:100

8 set.seed (123)

9 A <- rnorm(k, mean = 0, sd = sqrt(sigma2))

10 B <- rnorm(k, mean = 0, sd = sqrt(sigma2))

11 X_t <- sapply(t, function(ti) {

12 sum(A * cos(omega * ti) + B * sin(omega * ti))

13 })

14 df <- data.frame(Time = t, Value = X_t)

15 ggplot(df, aes(x = Time , y = Value)) +

16 geom_line() +

17 geom_point()+

18 ggtitle(” Sample Path ”) +

19 xlab(”Time”) +

20 ylab(”X( t ) ”) +

21 theme_minimal ()
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22 F_lambda <- function(lambda , omega , sigma2) {

23 sapply(lambda , function(l) {

24 sum(sigma2 * (0.5 * (l >= -omega & l < omega) +

1.0 * (l >= omega)))

25 })

26 }

27 lambda <- seq(-pi , pi, length.out = 1000)

28 F_values <- F_lambda(lambda , omega , sigma2)

29 df_F <- data.frame(Lambda = lambda , F_Lambda = F_

values)

30 ggplot(df_F, aes(x = Lambda , y = F_Lambda)) +

31 geom_step() +

32 ggtitle(” S p e c t r a l D i s t r i b u t i o n Funct ion F( ) ”) +

33 xlab(” ”) +

34 ylab(”F( ) ”) +

35 theme_minimal ()

R code Exa 4.1.4 Spectral density of AR 1

1 # Page no . 103
2 library(ggplot2)

3 library(stats)

4 set.seed (123)

5 n <- 1000

6 # Figur e 4−3
7 phi <- 0.7

8 sigma2 <- 1

9 density <- function(lambda , phi , sigma2) {

10 1 / (2 * pi) * sigma2 / (1 + phi^2 - 2 * phi * cos

(lambda))

11 }

12 lambda <- seq(0, pi, length.out = 1000)

13 values <- density(lambda , phi , sigma2)

14 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)
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15 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

16 geom_line() +

17 ggtitle(” S p e c t r a l Dens i ty ”) +

18 xlab(” ”) +

19 ylab(” S p e c t r a l Dens i ty ”) +

20 theme_minimal ()

21 # Figur e 4−4
22 phi <- -0.7

23 sigma2 <- 1

24 density <- function(lambda , phi , sigma2) {

25 1 / (2 * pi) * sigma2 / (1 + phi^2 - 2 * phi * cos

(lambda))

26 }

27 lambda <- seq(0, pi, length.out = 1000)

28 values <- density(lambda , phi , sigma2)

29 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

30 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

31 geom_line() +

32 ggtitle(” S p e c t r a l Dens i ty ”) +

33 xlab(” ”) +

34 ylab(” S p e c t r a l Dens i ty ”) +

35 theme_minimal ()

36 # Figur e 4−5
37 phi <- 0.7

38 ar_process <- arima.sim(model = list(ar = c(phi)), n

= n)

39 acf(ar_process , main = ”ACF o f AR( 1 ) P r o c e s s ”)
40 # Figur e 4−6
41 phi <- -0.7

42 ar_process <- arima.sim(model = list(ar = c(phi)), n

= n)

43 acf(ar_process , main = ”ACF o f AR( 1 ) P r o c e s s ”)
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R code Exa 4.1.5 Spectral density of MA 1

1 # Page no . 105
2 library(ggplot2)

3 theta <- 0.9

4 sigma2 <- 1

5 density <- function(lambda , theta , sigma2) {

6 sigma2 / (2 * pi) * (1 + theta^2 + 2 * theta * cos

(lambda))

7 }

8 lambda <- seq(0, pi, length.out = 1000)

9 values <- density(lambda , theta , sigma2)

10 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

11 # Figur e 4−7
12 ggplot(df_spectral , aes(x = Lambda , y =

SpectralDensity)) +

13 geom_line() +

14 ggtitle(” S p e c t r a l Dens i ty o f MA( 1 ) P r o c e s s ”) +

15 xlab(expression(lambda)) +

16 ylab(expression(f(lambda))) +

17 theme_minimal ()

18 # Figur e 4−8
19 theta <- -0.9

20 sigma2 <- 1

21 density <- function(lambda , theta , sigma2) {

22 sigma2 / (2 * pi) * (1 + theta^2 + 2 * theta * cos

(lambda))

23 }

24 lambda <- seq(0, pi, length.out = 1000)

25 values <- density(lambda , theta , sigma2)

26 df_spectral <- data.frame(Lambda = lambda ,

SpectralDensity = values)

27 ggplot(df_spectral , aes(x = Lambda , y =
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SpectralDensity)) +

28 geom_line() +

29 ggtitle(” S p e c t r a l Dens i ty o f MA( 1 ) P r o c e s s ”) +

30 xlab(expression(lambda)) +

31 ylab(expression(f(lambda))) +

32 theme_minimal ()

R code Exa 4.2.2 Sunspot numbers spectral density

1 # Page No . 110
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(TSA)

5 library(stats)

6 library(itsmr)

7 spots= read.csv(”SUNSPOTS .TSM”, header =FALSE)

8 colnames(spots)[1] <- ” s u n s p o t s ”
9 periodogram <- spec.pgram(spots , log = ”no”, plot =

FALSE)

10 freq <- periodogram$freq

11 spec <- periodogram$spec

12 weights <- rep(1/3, 3)

13 freq <- freq * (2 * pi)

14 smoothed_spec <- stats:: filter(spec , filter=weights ,

sides =2)

15 # Figur e 4−9
16 p <- periodogram(ts(spots$sunspots), q = 1, opt = 0)

17 plot(p$freq ,(p$spec)/(2*pi), type = ”o−”, pch=19,

xlab = ” f r e q u e n c y ”, ylab = ” s p e c t r a l d e n s i t y ”)
18 # Figur e 4−10
19 df <- data.frame(freq = freq , smoothed_spec =

smoothed_spec)

20 ggplot(df, aes(x = freq , y = smoothed_spec)) +

21 geom_line() +
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22 scale_x_continuous(limits = c(0, pi)) +

23 labs(

24 x = expression(lambda),

25 y = expression(hat(f)(lambda)),

26 title = ” S p e c t r a l Dens i ty Est imate ”
27 ) +

28 theme_minimal ()

29 # Figur e 4−11
30 weights <- c(1/15, 2/15, 3/15, 3/15, 3/15, 2/15, 1/

15)

31 smoothed_spec <- stats:: filter(spec , filter=weights ,

sides =2)

32 df <- data.frame(freq = freq , smoothed_spec =

smoothed_spec)

33 ggplot(df, aes(x = freq , y = smoothed_spec)) +

34 geom_line() +

35 scale_x_continuous(limits = c(0, pi)) +

36 labs(

37 x = expression(lambda),

38 y = expression(hat(f)(lambda)),

39 title = ” S p e c t r a l Dens i ty Est imate ”
40 ) +

41 theme_minimal ()

R code Exa 4.4.1 Spectral density of AR 2

1 # Page 112
2 library(ggplot2)

3 D_q <- function(lambda , q) {

4 if (lambda == 0) {

5 return (1)

6 } else {

7 return(sin((q + 0.5) * lambda) / ((2 * q + 1) *

sin(lambda / 2)))

8 }
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9 }

10 q <- 10

11 lambda <- seq(0, pi, length.out = 1000)

12 D_10 <- sapply(lambda , D_q, q = q)

13 df <- data.frame(lambda = lambda , D_10 = D_10)

14 ggplot(df, aes(x = lambda , y = D_10)) +

15 geom_line() +

16 labs(

17 x = expression(lambda),

18 y = expression(D[10]( lambda)),

19 title = ” T r a n s f e r Funct ion D[ 1 0 ] ( lambda ) f o r
S imple Moving−Average F i l t e r ”

20 ) +

21 theme_minimal ()

22 # Figur e 4−13
23 ideal_low_pass <- function(lambda , wc) {

24 ifelse(abs(lambda) <= wc, 1, 0)

25 }

26 wc <- pi / 4

27 q_values <- c(2, 10)

28 ideal_values <- ideal_low_pass(lambda , wc)

29 D_2_values <- sapply(lambda , D_q, q = 2)

30 D_10_values <- sapply(lambda , D_q, q = 10)

31 df <- data.frame(

32 lambda = rep(lambda , 3),

33 value = c(ideal_values , D_2_values , D_10_values),

34 type = factor(rep(c(” I d e a l ”, ”q = 2”, ”q = 10 ”),
each = length(lambda)))

35 )

36 ggplot(df, aes(x = lambda , y = value , color = type))

+

37 geom_line() +

38 labs(

39 x = expression(lambda),

40 y = ” T r a n s f e r Funct ion ”,
41 title = ” T r a n s f e r Func t i on s : I d e a l Low−Pass

F i l t e r and Truncated F o u r i e r Approx imat ions ”
42 ) +
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43 scale_color_manual(values = c(” I d e a l ” = ” b l a c k ”, ”
q = 2” = ” b lue ”, ”q = 10 ” = ” red ”)) +

44 theme_minimal () +

45 theme(legend.title = element_blank ())
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Chapter 5

Modeling and Forecasting with
ARMA Processes

R code Exa 5.1.1 The Dow Jones Utilities Index

1 # Page No . 126
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 ar_model <- ar(dowjones_diff , order.max = 1, method

= ” yule−walke r ”)
10 sample_autocovariance <- acf(dowjones_diff , plot =

FALSE , type = ’ c o v a r i a n c e ’ )
11 ar_coefficient <- ar_model$ar

12 par(mfrow = c(1, 2))

13 acf(dowjones_diff , main = ”ACF o f D i f f e r e n c e d S e r i e s
”)

14 pacf(dowjones_diff , main = ”PACF o f D i f f e r e n c e d
S e r i e s ”)
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15 print(sample_autocovariance)

16 print(ar_coefficient)

R code Exa 5.1.2 MA 1 model forecasting

1 # Page No . 128
2 library(forecast)

3 library(tseries)

4 oshorts <- read.csv(”OSHORTS.TSM”, header = FALSE)

5 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
6 ots <- ts(oshorts$overshorts)

7 rho_1 <- acf(ots , plot=FALSE)$acf [2]

8 gamma <- acf(ots , plot = FALSE , type = ’ c o v a r i a n c e ’ )
$acf[1]

9

10 if (abs(rho_1) > 0.5) {

11 theta_hat <- rho_1/abs(rho_1)

12 } else {

13 theta_hat <- (rho_1) * sqrt(4 * rho_1^2 - 4 * rho_

1) / (2 * abs(rho_1))

14 }

15 sigma2_hat <- gamma / (1 + theta_hat^2)

16 cat(” Est imated t h e t a _hat : ”, theta_hat , ”\n”)
17 cat(” Est imated s igma2 _hat : ”, sigma2_hat , ”\n”)

R code Exa 5.1.3 Dow jones utilities index using burg model

1 # Page No . 131
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)
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6 colnames(dow)[1] <- ” j o n e s ”
7 time_series <- ts(dow$jones)

8 Y_t <- diff(time_series , lag=1)

9 ar_order <- 1

10 burg_model <- burg(Y_t, ar_order)

11 ar_param <- burg_model$phi

12 stderror <- (burg_model$se.phi)

13 aicc <- burg_model$aicc

14 cat(”AR( 1 ) model parameter : ”, ar_param , ”\n”)
15 cat(”AICC : ”, aicc , ”\n”)
16 find_conf <- function(param , stderr){

17 low <- param - (stderr*1.96)

18 high <- param + (stderr*1.96)

19 x <- c(low , high)

20 return (x)

21 }

22 confs <- find_conf(ar_param ,stderror)

23 cat(”95% Con f id ence Bounds : ”,confs)

R code Exa 5.1.4 Modeling on Lake data

1 # Page No . 131
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 huron <- read.csv(”LAKE.TSM”, header=FALSE)

6 colnames(huron)[1] <- ’ water ’
7 time_series <- ts(huron$water)

8 Y_t <- time_series

9 X_t <- Y_t - 9.0041

10 par(mfrow = c(1, 2))

11 # Figur e 5−3
12 acf(X_t, main = ”ACF”)
13 # Figur e 5−4
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14 pacf(X_t, main = ”PACF”)
15 ar_order <-2

16

17 # Burg model
18 burg_model <- burg(X_t, ar_order)

19 arb_param <- burg_model$phi

20 stderr <- (burg_model$se.phi)

21 aicc <- burg_model$aicc

22 conf_lower <- arb_param - (stderr*1.96)

23 conf_upper <- arb_param + (stderr*1.96)

24 print(” For burg model : ”)
25 cat(”AR( 1 ) model parameter : ”, arb_param , ”\n”)
26 cat(”AICC : ”, aicc , ”\n”)
27 cat(”95% Con f id ence Bounds : ( ”, conf_lower , ” , ”,

conf_upper , ” ) \n”)
28

29 # Yule wa lke r model
30 yw_model <- yw(X_t, ar_order)

31 ary_param <- yw_model$phi

32 stderr <- (yw_model$se.phi)

33 aicc <- yw_model$aicc

34 conf_lower <- ary_param - (stderr*1.96)

35 conf_upper <- ary_param + (stderr*1.96)

36 print(” For y u l e wa lke r model : ”)
37 cat(”AR( 1 ) model parameter : ”, ary_param , ”\n”)
38 cat(”AICC : ”, aicc , ”\n”)
39 cat(”95% Con f id ence Bounds : ( ”, conf_lower , ” , ”,

conf_upper , ” ) \n”)

R code Exa 5.1.5 Estimations on Dow jones utilities index

1 # Page No . 134
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)
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4 library(itsmr)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 time_series <- ts(dow$jones)

8 Y_t <- diff(time_series , lag=1)

9 ma_order <- 2

10 inno_model <- ia(Y_t, ma_order , m = 17)

11 ma_param <- inno_model$theta

12 stderr <- (inno_model$se.theta)

13 aicc <- inno_model$aicc

14 stddev_1 <- ma_param [1]/(1.96*stderr [1])

15 stddev_2 <- ma_param [2]/(1.96*stderr [2])

16 wnvar <- inno_model$sigma2

17 cat(”MA( 2 ) model parameter : ”, ma_param , ”\n”)
18 cat(”AICC : ”, aicc , ”\n”)
19 print(” Standard d e v i a t i o n s f o r f i r s t two MA

paramete r s : ”)
20 print(stddev_1);print(stddev_2)

21 cat(” White n o i s e v a r i a n c e : ”, wnvar)

R code Exa 5.1.6 Estimations on Lake data

1 # Page No . 137
2 library(itsmr)

3 library(tseries)

4 huron <- read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(huron)[1] <- ’ water ’
6 Y_t <- ts(huron$water)

7 X_t <- Y_t - mean(Y_t)

8 arma_model <- arma(X_t, p=1, q=1)

9 ma_param <- arma_model$theta

10 ar_param <- arma_model$phi

11 stderr_phi <- arma_model$se.phi

12 stderr_theta <- arma_model$se.theta

13 aicc <- arma_model$aicc
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14 stddev_phi <- ar_param/(1.96*stderr_phi)

15 stddev_theta <- ma_param/(1.96*stderr_theta)

16 cat(” Est imated AR c o e f f i c i e n t : ”, ar_param , ”\n”)
17 cat(” Est imated MA c o e f f i c i e n t : ”, ma_param , ”\n”)
18 cat(”AICC : ”, aicc , ”\n”)
19 cat(” Standard d e v i a t i o n s : ”, stddev_phi , ” ”,

stddev_theta)

20 find_conf <- function(param , stderr){

21 low <- param - (stderr*1.96)

22 high <- param + (stderr*1.96)

23 x <- c(low , high)

24 return (x)

25 }

26 conf_phi <- find_conf(ar_param , stderr_phi)

27 cat(”95% Con f id ence Bounds f o r ph i : ”, conf_phi)

28 conf_theta <- find_conf(ma_param , stderr_theta)

29 cat(”95% Con f id ence Bounds f o r t h e t a : ”, conf_theta)

R code Exa 5.1.7 Lake data analysis using Hannan algorithm

1 # Page No . 138
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 huron <- read.csv(”LAKE.TSM”, header = FALSE)

6 colnames(huron)[1] <- ’ water ’
7 time_series <- ts(huron$water)

8 Y_t <- time_series

9 X_t <- Y_t - mean(Y_t)

10 p <- 1

11 q <- 1

12 h_model <- hannan(X_t, p, q)

13 ar_param <- h_model$phi

14 ma_param <- h_model$theta

41



15 aicc <- h_model$aicc

16 stderr_phi <- h_model$se.phi

17 stderr_theta <- h_model$se.theta

18 stddev_phi <- ar_param/(1.96*stderr_phi)

19 stddev_theta <- ma_param/(1.96*stderr_theta)

20 cat(” Est imated AR c o e f f i c i e n t : ”, ar_param , ”\n”)
21 cat(” Est imated MA c o e f f i c i e n t : ”, ma_param , ”\n”)
22 cat(”AICC : ”, aicc , ”\n”)
23 cat(” Standard d e v i a t i o n s , ph i and t h e t a

r e s p e c t i v e l y : ”, stddev_phi , stddev_theta)

24 find_conf <- function(param , stderr){

25 low <- param - (stderr*1.96)

26 high <- param + (stderr*1.96)

27 x <- c(low , high)

28 return (x)

29 }

30 confs_phi <- find_conf(ar_param ,stderr_phi)

31 cat(”95% Con f id ence Bounds f o r ph i : ”,confs_phi)
32 confs_theta <- find_conf(ma_param ,stderr_theta)

33 cat(”95% Con f id ence Bounds f o r t h e t a : ”,confs_theta)

R code Exa 5.2.4 Burg and yule walker model comparison

1 # Page No . 143
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 dow_mean_diff <- dowjones_diff - mean(dowjones_diff)

10 p <- 1; q <- 0; n <- length(dow_mean_diff)

11 ywmodel <- yw(dow_mean_diff , p)
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12 bmodel <- burg(dow_mean_diff , p)

13 model <- autofit(dow_mean_diff , p=0:5, q=0:5)

14 aicc <- model$aicc

15 aicc_yw <- ywmodel$aicc

16 aicc_b <- bmodel$aicc

17 LL_yw <- aicc_yw - (2*(p+q+1)*n/(n-p-q-2))

18 LL_b <- aicc_b - (2*(p+q+1)*n/(n-p-q-2))

19 LL <- aicc - (2*(p+q+1)*n/(n-p-q-2))

20 b_param <- bmodel$phi

21 stderr <- model$se.phi

22 ar_param <- model$phi

23 find_conf <- function(param , stderr){

24 low <- param - (stderr*1.96)

25 high <- param + (stderr*1.96)

26 x <- c(low , high)

27 return (x)

28 }

29 confs <- find_conf(ar_param ,stderr)

30

31 cat(”Minimum AICC : ”,aicc ,”\n”)
32 cat(” Standard e r r o r : ”,stderr ,”\n”)
33 cat(”95% Con f id ence Bounds : ”,confs)
34 cat(”Log l i k e l i h o o d f o r a u t o f i t : ”,LL ,”\n”)
35 cat(” Parameters i n burg model : ”,b_param ,”\n”)
36 cat(”Log l i k e l i h o o d f o r y u l e wa lke r : ”,LL_yw,”\n”)
37 cat(”Log l i k e l i h o o d f o r burg : ”,LL_b,”\n”)

R code Exa 5.2.5 Autofit on Lake data

1 # Page No . 144
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 hudson <- read.csv(”LAKE.TSM”, header = FALSE)
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6 colnames(hudson)[1] <- ” l e v e l ”
7 Y_t <- ts(hudson$level)

8 X_t <- Y_t - mean(Y_t)

9 arma_model <- autofit(X_t, p=0:5, q=0:5)

10 aicc <- arma_model$aicc

11 ar_param <- arma_model$phi

12 ma_param <- arma_model$theta

13 stderr_phi <- arma_model$se.phi

14 stderr_theta <- arma_model$se.theta

15 stddev_phi <- ar_param/(1.96*stderr_phi)

16 stddev_theta <- ma_param/(1.96*stderr_theta)

17 find_conf <- function(param , stderr){

18 low <- param - (stderr*1.96)

19 high <- param + (stderr*1.96)

20 x <- c(low , high)

21 return (x)

22 }

23 confs_phi <- find_conf(ar_param ,stderr_phi)

24 confs_theta <- find_conf(ma_param ,stderr_theta)

25 cat(”AICC : ”,aicc ,”\n”)
26 cat(”AR Parameter : ”,ar_param ,”\n”)
27 cat(”MA Parameter ”,ma_param ,”\n”)
28 cat(” Standard d e v i a t i o n s f o r ph i and t h e t a : ”,stddev_

phi ,stddev_theta ,”\n”)
29 print(”95% Con f id ence i n t e r v a l s : ”)
30 cat(” f o r ph i : ”,confs_phi ,”\n”)
31 cat(” f o r t h e t a : ”,confs_theta ,”\n”)

R code Exa 5.4.1 Forecasts on overshorts data

1 # Page No . 147
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to randomiza t i on
4 library(tseries)

44



5 library(forecast)

6 oshorts <- read.csv(”OSHORTS.TSM”,header = FALSE)

7 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
8 Xts <- ts(oshorts$overshorts)

9 best_model <- auto.arima(Xts ,max.order = 1, stepwise

= FALSE , approximation = FALSE)

10 best_model$coef

11 ma_model <- arima(Xts , order = c(0, 0, 1))

12 predictions <- predict(ma_model ,7)

13 mean_Xts <- mean(Xts)

14 predicted_values <- as.numeric(predictions$pred)

15 mse <- sqrt(mean((Xts - mean_Xts)^2 ))

16 cat(” P r e d i c t e d Values : \ n”)
17 print(predicted_values)

18 cat(”Mean Squared Er ro r (MSE) : \ n”)
19 print(mse)

R code Exa 5.5.1 FPE based selection of an AR model for Lake data

1 # Page No . 150
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(itsmr)

5 huron <- read.csv(”LAKE.TSM”, header = FALSE)

6 colnames(huron)[1] <- ’ water ’
7 Y_t <- ts(huron$water)

8 X_t <- Y_t - mean(Y_t)

9 ar_orders <- 1:10

10 fpe_values <- numeric(length(ar_orders))

11 sigma_squared_values <- numeric(length(ar_orders))

12 for (p in ar_orders) {

13 ar_model <- arma(X_t, p=p, q=0)

14 n <- length(X_t)

15 sigma_squared <- ar_model$sigma2
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16 fpe_values[p] <- (n + p) / (n - p) * sigma_squared

17 sigma_squared_values[p] <- sigma_squared

18 }

19 for (p in ar_orders) {

20 cat(” Order ”, p, ”− FPE : ”, fpe_values[p], ” Sigma ˆ 2 :
”, sigma_squared_values[p], ”\n”)

21 }

R code Exa 5.5.2 AICC based model selection

1 # Page No . 153
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 huron <- read.csv(”LAKE.TSM”, header=FALSE)

6 colnames(huron)[1] <- ’ water ’
7 Y_t <- ts(huron$water)

8 X_t <- Y_t - mean(Y_t)

9 p <- 1 ; q <- 1

10 best_model2 <- arma(X_t, p=p, q=q)

11 cat(” Best ARIMA model based on AICC : \ n”)
12 print(best_model2$aicc)

13 p <- 2; q <- 0

14 best_model1 <- arma(X_t, p=p, q=q)

15 cat(” Best ARIMA model based on AICC : \ n”)
16 print(best_model1$aicc)
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Chapter 6

Nonstationary and Seasonal
time series models

R code Exa 6.1.1 ARIMA 1 1 0 Process

1 # Page No . 159
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 library(ggplot2)

5 phi <- 0.8

6 sigma2 <- 1

7 n <- 200

8 set.seed (123)

9 Xt <- arima.sim(model = list(order = c(1,1,0), ar =

phi), n = n, sd = sqrt(sigma2))

10 # Figur e 6−1
11 autoplot(Xt) +

12 ggtitle(”ARIMA( 1 , 1 , 0 ) ”) +

13 geom_point()+

14 xlab(”Time”) +

15 ylab(”Xt”) +

16 theme_minimal ()

17 # Figur e 6−2
18 acf_plot <- ggAcf(Xt) +
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19 ggtitle(” Sample ACF”) +

20 theme_minimal ()

21 print(acf_plot)

22 # Figur e 6−3
23 pacf(Xt, main =” Sample PACF”)
24 # Figur e 6−4
25 Yt <- diff(Xt)

26 plot(Yt)

R code Exa 6.2.1 Burg model on Australian wine data

1 # Page no . 168
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s
4 library(forecast)

5 library(tseries)

6 library(itsmr)

7 wine_data <- read.csv(”WINE.TSM”, header = FALSE)

8 colnames(wine_data)[1] <- ’ S a l e s ’
9 winedata <- ts(wine_data$Sales)

10 M <- c(” s e a s o n ” ,12, ” t r end ” ,1)
11 newwine <- Resid(winedata ,M)

12 plot(newwine , type= ’ l ’ )
13 M <- c(” l o g ”,” d i f f ” ,12)
14 newwine <- Resid(winedata ,M)

15 plot(newwine , type= ’ l ’ )
16 acf(newwine)

17 pacf(newwine)

18 Wts <- newwine -mean(newwine)

19 burg_model <- burg(Wts , p=12)

20 print(burg_model)

21 arma_model <- autofit(Wts , p=0:15, q=0)

22 print(arma_model)
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R code Exa 6.2.2 Autofit for minimum AICC model

1 # Page No . 169
2 library(tseries)

3 library(itsmr)

4 huron <- read.csv(”LAKE.TSM”, header=FALSE)

5 colnames(huron)[1] <- ’ water ’
6 Y_t <- ts(huron$water)

7 X_t <- Y_t - mean(Y_t)

8 model <- autofit(X_t,p=0:2,q=0:2)

9 cat(” Phi : \ n”, model$phi)

10 cat(” Theta : \ n”, model$theta)

11 cat(” Var i ance : \ n”, model$sigma2)

12 cat(”AICC : \ n”, model$aicc)

R code Exa 6.3.1 Test statistic on simulated data

1 # Page no . 171
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 library(tseries)

5 phi <- 0.8

6 sigma2 <- 1

7 n <- 200

8 set.seed (123)

9 X0 <- 0

10 Xt <- arima.sim(model = list(order = c(1,1,0), ar =

phi), n = n, sd = sigma2)

11 Xt <- c(X0, Xt)

12 dXt <- diff(Xt)

13 Xt_lag1 <- lag(Xt, 1)

14 dXt_lag1 <- lag(dXt , 1)
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15 dXt_lag2 <- lag(dXt , 2)

16 valid_indices <- 4:200

17 reg_data <- data.frame(

18 dXt = dXt[valid_indices - 1],

19 Xt_lag1 = Xt[valid_indices - 1],

20 dXt_lag1 = dXt[valid_indices - 2],

21 dXt_lag2 = dXt[valid_indices - 3]

22 )

23 reg_model <- lm(dXt ~ Xt_lag1 + dXt_lag1 + dXt_lag2 ,

data = reg_data)

24 coeff_Xt_lag1 <- summary(reg_model)$coefficients[”Xt
_ l a g 1 ”, ” Est imate ”]

25 se_Xt_lag1 <- summary(reg_model)$coefficients[”Xt_
l a g 1 ”, ” Std . Er ro r ”]

26 test_statistic <- coeff_Xt_lag1 / se_Xt_lag1

27 cat(” Test s t a t i s t i c f o r u n i t r o o t : ”, test_statistic ,

”\n”)

R code Exa 6.3.2 Model parameters for overshorts data

1 # Page No . 173
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tseries)

4 library(forecast)

5 oshorts= read.csv(”OSHORTS.TSM”, header = FALSE)

6 colnames(oshorts)[1] <- ’ o v e r s h o r t s ’
7 Xts <- ts(oshorts$overshorts)

8 Y_t <- Xts + 4.035

9 best_model <- auto.arima(Y_t, stepwise = FALSE ,

approximation = FALSE)

10 print(best_model$coef)

11 print ((-2)*logLik(best_model))
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R code Exa 6.4.1 ARIMA 1 1 0 model on Dow jones utilities index

1 # Page No . 176
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 dow <- read.csv(”DOWJ.TSM”, header = FALSE)

6 colnames(dow)[1] <- ” j o n e s ”
7 dowjones <- ts(dow$jones)

8 dowjones_diff <- diff(dowjones , lag = 1)

9 M = c(” d i f f ”, 1)

10 dowj <- Resid(dowjones ,M)

11 dowj <- dowj - mean(dowj)

12 p <- 1; q <- 0;

13 bmodel <- burg(dowj , p)

14 cat(”Mean squared e r r o r ”,bmodel$sigma2)
15 print(bmodel)

R code Exa 6.5.2 ACF of seasonal MA model

1 # Page no . 178
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 set.seed (123)

5 n <- 500

6 U_t <- rnorm(n)

7 lag <- 12

8 X_t <- U_t

9 X_t[(lag + 1):n] <- U_t[(lag + 1):n] - 0.4 * U_t[1:(

n - lag)]

10 acf(X_t, main=”ACF”)
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R code Exa 6.5.3 ACF of seasonal AR model

1 # Page no . 179
2 # Answer may vary due to randomiza t i on
3 library(forecast)

4 set.seed (123)

5 n <- 500

6 U_t <- rnorm(n)

7 X_t <- numeric(n)

8 X_t[1:12] <- U_t[1:12]

9 for (t in (12 + 1):n) {

10 X_t[t] <- U_t[t] + 0.7 * X_t[t - 12]

11 }

12 acf(X_t, main=”ACF”)

R code Exa 6.5.4 ACF of monthly accidental deaths data

1 # Page no . 180
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s .
4 library(forecast)

5 library(astsa)

6 library(itsmr)

7 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

8 colnames(deaths)[1] <- ” dea th s ”
9 deaths$months=seq(as.Date(”1973−01−01”), as.Date(”

1978−12−01”),by= ’ month ’ )
10 diff1 <- diff(deaths$deaths , lag = 12)

11 Yt <- ts(diff(diff1),frequency = 12)

12 # Figur e 6−17
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13 acf(Yt , main=”ACF”)
14 best_model <- auto.arima(Yt , seasonal=TRUE , stepwise

= FALSE , approximation = FALSE)

15 print(best_model)

16 sarima_model <- Arima(Yt, order = c(0, 1, 1),

seasonal = c(0, 1, 1))

17 model_params <- sarima_model$coef

18 print(model_params)

R code Exa 6.5.5 Forecasting monthly accidental deaths

1 # Page no . 180
2 # Answer may vary due to s p e c i f i c s o f t w a r e f e a t u r e s .
3 library(forecast)

4 library(itsmr)

5 deaths= read.csv(”DEATHS.TSM”, header = FALSE)

6 dts <- ts(deaths ,frequency = 12)

7 dts_diff_12 <- diff(dts , lag = 12)

8 dts_diff_12_1 <- diff(dts_diff_12, lag = 1)

9 dts_mean_corrected <- dts_diff_12_1 - mean(dts_diff_

12_1)

10 fit <- arma(dts_mean_corrected ,p=0,q=13)

11 M <- c(” d i f f ” ,12,” d i f f ” ,1)
12 forecast_values <- forecast(dts ,M,fit ,h = 6)

R code Exa 6.6.1 GLS based Model parameter estimation

1 # Page no . 187
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(nlme)

5 oshorts= read.csv(”OSHORTS.TSM”, header = FALSE)
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6 colnames(oshorts)[1] <- ” o v e r s h o r t s ”
7 oshorts$time <- seq(1,length(oshorts$overshorts))

8 ots <- ts(oshorts$overshorts)

9 ots <- ots -mean(ots)

10 oshorts$overshorts <- oshorts$overshorts -mean(

oshorts$overshorts)

11 a <- autofit(ots , p=0, q=1)

12 print(a$theta)

13 cat(”OLS beta : ”,mean(oshorts$overshorts))
14 acv <- acf(oshorts$overshorts ,type = ’ c o v a r i a n c e ’ ,

plot=FALSE)

15 cat(” Es t imato r f o r beta : ”,acv$acf [1]/length(ots))
16 model_formula <- overshorts ~ time

17 gls_model <- gls(model_formula , data = oshorts)

18 summary(gls_model)

R code Exa 6.6.2 Model parameters estimation for Lake data

1 # Page no . 189
2 library(forecast)

3 library(nlme)

4 hudson <- read.csv(”LAKE.TSM”, header = FALSE)

5 colnames(hudson)[1] <- ’ l e v e l ’
6 hudson$t <- seq(1, length(hudson$level))

7 ols_model <- lm(hudson$level ~ hudson$t)

8 ols_residuals <- residuals(ols_model)

9 beta1_hat <- coef(ols_model)[1]

10 cat(”OLS e s t i m a t e o f be ta1 : ”, beta1_hat , ”\n”)
11 ar2_model <- Arima(ols_residuals , order=c(2,0,0))

12 phi1_hat <- coef(ar2_model)[” ar1 ”]
13 phi2_hat <- coef(ar2_model)[” ar2 ”]
14 sigma2_hat <- ar2_model$sigma2

15 cat(” ph i1 : ”,phi1_hat)
16 cat(” ph i2 : ”,phi2_hat)
17 cat(” s td . dev . : ”,sigma2_hat)
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18 glsEstimate () <- gls(lm(level~t),data = hudson)

R code Exa 6.6.3 Seat belt legislation

1 # Page no . 189
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(nlme)

5 library(ggplot2)

6 seat <- read.csv(”SBL .TSM”, header = FALSE)

7 gt <- read.csv(”SBLDIN .TSM”, header = FALSE)

8 colnames(gt)[1] <- ’Y ’
9 colnames(seat)[1] <- ” acc ”

10 seat$Years <- seq(as.Date(”1975−01−01”), as.Date(”
1984−12−01”), by = ”month”)

11 ggplot(seat , aes(x = Years , y = acc)) +

12 geom_point(shape = 15, size = 1) +

13 geom_line() +

14 labs(title = ”Road i n j u r i e s ( Jan 1975 − Dec 1984) ”
,

15 x = ”Months”,
16 y = ” I n j u r i e s ”) +

17 theme_minimal ()

18 # P r e d i c t i o n may d i f f e r due to s p e c i f i c s o f t w a r e
methods

19 Yt <- ts(seat$acc)

20 Xt <- Yt -diff(Yt,lag = 12)

21 data <- data.frame(X = Xt,Y = gt)

22 gls_model <- gls(X~Y, data = data)

23 fitted_values <- fitted(gls_model)

24 seat <-seat[-c(1:12) , ]

25 seat$fit <- fitted_values

26 plot(seat$Years ,seat$acc , main = ” O r i g i n a l Data and
F i t t e d GLS Line ”,
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27 xlab = ”Time”, ylab = ” Value ”, type = ”o−”)
28 lines(seat$Years , fitted_values , col = ” red ”, lwd =

2)
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Chapter 7

Time Series Models for
Financial Data

R code Exa 7.2.1 ARCH 1 Series

1 # Page no . 199
2 # Answer may vary due to randomiza t i on
3 alpha0 <- 1

4 alpha1 <- 0.5

5 n <- 1000

6 set.seed (123)

7 epsilon <- rnorm(n)

8 sigma2 <- numeric(n)

9 y <- numeric(n)

10 for (t in 2:n) {

11 sigma2[t] <- alpha0 + alpha1 * y[t-1]^2

12 y[t] <- sqrt(sigma2[t]) * epsilon[t]

13 }

14 plot(y, type = ” l ”, main = ” S imula ted ARCH( 1 )
P r o c e s s ”, xlab = ”Time”, ylab = ” Value ”)

15 acf(y)
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R code Exa 7.2.2 Fitting GARCH models to stock data

1 # Page No . 201
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(tseries)

5 library(rugarch)

6 E1032 <- read.csv(” E1032 .TSM”)
7 char_array <- E1032 [39:193 ,]

8 matches <- gregexpr(” −? [0−9 . ]+(? :\\ s * [ Ee
] [+− ]? [0−9]+) ? ”, char_array)

9 stock <- ts(as.numeric(unlist(regmatches(char_array ,

matches))))

10 garch_spec <- ugarchspec(mean.model = list(armaOrder

= c(0,0)),

11 variance.model = list(model

= ”sGARCH”, garchOrder

= c(1,1)))

12 garch_fit <- ugarchfit(data = stock , spec = garch_

spec)

13 sigma <- sigma(garch_fit)

14 par(mfrow=c(2,1))

15 plot(stock ,type = ’ l ’ , col = ’ b l u e ’ ,ylab = ’
p e r c e n t a g e r e t u r n s ’ )

16 plot(sigma , type = ’ l ’ , col = ’ r ed ’ , ylab = ’
V o l a t i l i t y ’ )

R code Exa 7.2.3 Fitting ARMA Models Driven by GARCH Noise

1 # Page No . 203
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 # Answer may vary due to s o f t w a r e s p e c i f i c a t i o n s
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5 library(forecast)

6 library(tseries)

7 library(rugarch)

8 sunspot <- read.csv(”SUNSPOTS .TSM”)
9 colnames(sunspot)[1] <- ” s p o t s ”
10 sunspots <- ts(sunspot$spots)

11 sunspots_mean_corrected <- sunspots - mean(sunspots ,

na.rm = TRUE)

12 fit_arima <- Arima(sunspots_mean_corrected , order =

c(4,0,3))

13 print(fit_arima)

14 residuals_arima <- fit_arima$residuals

15 p <- 1

16 q <- 1

17 spec <- ugarchspec(variance.model = list(model = ”
sGARCH”, garchOrder = c(p, q)),

18 mean.model = list(armaOrder = c

(4, 3), include.mean = TRUE),

19 distribution.model = ”norm”)
20 fit_garch <- ugarchfit(spec = spec , data = residuals

_arima)

21 print(fit_garch)

22 n <- as.numeric(length(sunspots_mean_corrected))

23 aicc <- (((-2)*(fit_garch@fit$LLH))*(n/(n-p)))+ (((p

+q+2)*(2*n))/(n-p-q-2))

24 print(paste(”AICC v a l u e f o r the GARCH model : ”, aicc)

)

25 print(” Parameters o f the GARCH( 1 , 1 ) model : ”)
26 print(coef(fit_garch))

R code Exa 7.5.1 Brownian motion

1 # Page no . 213
2 # Answer may vary due to randomiza t i on
3 T <- 10; n <- 1000; dt <- T / n
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4 time_points <- seq(0, T, by = dt)

5 set.seed (123)

6 increments <- rnorm(n, mean = 0, sd = sqrt(dt))

7 B_t <- c(0, cumsum(increments))

8 plot(time_points , B_t, type = ” l ”,
9 main = ” Standard Brownian Motion B( t ) ”,
10 xlab = ”Time”, ylab = ”B( t ) ”,
11 col = ” b lue ”, lwd = 2)

R code Exa 7.5.2 Poisson process

1 # Page no . 214
2 lambda <- 5

3 T <- 10

4 set.seed (123)

5 jump_times <- cumsum(rexp (100, rate = lambda))

6 jump_times <- jump_times[jump_times <= T]

7 N_t <- seq_along(jump_times)

8 jump_times <- c(0, jump_times)

9 N_t <- c(0, N_t)

10 plot(jump_times , N_t, type = ” s ”,
11 main = ” Po i s s on P r o c e s s N( t ) ”,
12 xlab = ”Time”, ylab = ”N( t ) ”,
13 col = ” b lue ”, lwd = 2)

R code Exa 7.5.3 Compound Poisson Process

1 # Page no . 214
2 lambda <- 5; T <- 10; mu <- 0; sigma <- 1

3 set.seed (123)

4 jump_times <- cumsum(rexp (100, rate = lambda))

5 jump_times <- jump_times[jump_times <= T]
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6 jump_sizes <- rnorm(length(jump_times), mean = mu,

sd = sigma)

7 X_t <- cumsum(jump_sizes)

8 jump_times <- c(0, jump_times)

9 X_t <- c(0, X_t)

10 plot(jump_times , X_t, type = ” s ”,
11 main = ”Compound Po i s s on P r o c e s s X( t ) ”,
12 xlab = ”Time”, ylab = ”X( t ) ”,
13 col = ” b lue ”, lwd = 2)
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Chapter 8

Multivariate Time Series

R code Exa 8.1.1 Dow Jones and All Ordinaries Indices

1 # Page No . 229
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 dow <- read.csv(”DJAO2 .TSM”, header = FALSE)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 colnames(pc)[1] <- ” s t o c k s ”
8 char_array <- dow[,1]

9 matches <- gregexpr(”\\b\\d {3 ,}\\b”, char_array)

10 stock <- as.numeric(unlist(regmatches(char_array ,

matches)))

11 dowjones <- ts(stock[c(TRUE , FALSE)])

12 Aus <- ts(stock[c(FALSE , TRUE)])

13 index <- seq_along(dowjones)

14 plot(index , dowjones , type = ’ l ’ , col = ’ b l u e ’ , lwd

= 2, ylim = range(c(dowjones ,1000)),

15 xlab = ’ Index ’ , ylab = ’ Va lues ’ , main = ’Dow
j o n e s and A u s t r a l i a n o r d i n a r y ’ )

16 lines(index , Aus , col = ’ r ed ’ , lwd = 2)

17
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18 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

19 dowjones1 <- ts(as.numeric(pcs$dow))

20 Aus1 <- ts(as.numeric(pcs$aus))

21 acf(dowjones1 , main = ” S e r i e s 1”)
22 acf(Aus1 , main = ” S e r i e s 2”)
23 ccf1 <- ccf(dowjones1 , Aus1 ,plot = FALSE)

24 positive_lag1 <- ccf1$lag >= 0

25 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1

], type = ”h”,
26 main = ” S e r i e s 1 * S e r i e s 2”,
27 xlab = ”Lag”, ylab = ”CCF”)
28 abline(h = 0)

29 ccf2 <- ccf(Aus1 ,dowjones1 ,plot = FALSE)

30 positive_lag2 <- ccf2$lag >= 0

31 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
32 main = ” S e r i e s 2 * S e r i e s 1”,
33 xlab = ”Lag”, ylab = ”CCF”)
34 abline(h = 0)

35 plot(lag(dowjones1 , -1), Aus1 , main=” S c a t t e r p l o t ”,
36 xlab=” Lagged TS1”, ylab=”TS2”, pch =19)

R code Exa 8.1.2 Sales with a leading indicator

1 # Page No . 230
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 sales <- read.delim(”SALES .TSM”, header = FALSE)

6 leads <- read.delim(”LEAD.TSM”, header = FALSE)

7 colnames(sales)[1] <- ” s a l e ”
8 colnames(leads)[1] <- ” l e a d ”
9 ls2 <- cbind(sales , leads)
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10 lst <- ts(ls2)

11 lst <- diff(lst)

12 par(mfrow = c(2, 2))

13 acf(lst[, 2], main = ” S e r i e s 1”)
14 acf(lst[, 1], main = ” S e r i e s 2”)
15 ccf1 <- ccf(lst[, 1], lst[, 2],plot = FALSE)

16 positive_lag1 <- ccf1$lag >= 0

17 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1

], type = ”h”,
18 main = ” S e r i e s 2 * S e r i e s 1”,
19 xlab = ”Lag”, ylab = ”CCF”)
20 abline(h = 0)

21 ccf2 <- ccf(lst[,2],lst[,1],plot = FALSE)

22 positive_lag2 <- ccf2$lag >= 0

23 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
24 main = ” S e r i e s 1 * S e r i e s 2”,
25 xlab = ”Lag”, ylab = ”CCF”)
26 abline(h = 0)

R code Exa 8.3.1 Sample correlations

1 # Page No . 239
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 library(tseries)

5 E731 <- read.delim(”E731A .TSM”, header=FALSE)

6 Ets <- ts(E731)

7 par(mfrow = c(2, 2))

8 acf(Ets[, 2], main = ” S e r i e s 1”)
9 acf(Ets[, 1], main = ” S e r i e s 2”)

10 ccf1 <- ccf(Ets[, 1], Ets[, 2],plot = FALSE)

11 positive_lag1 <- ccf1$lag >= 0

12 plot(ccf1$lag[positive_lag1], ccf1$acf[positive_lag1
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], type = ”h”,
13 main = ” S e r i e s 1 * S e r i e s 2”,
14 xlab = ”Lag”, ylab = ”CCF”)
15 abline(h = 0)

16 ccf2 <- ccf(Ets[,2],Ets[,1],plot = FALSE)

17 positive_lag2 <- ccf2$lag >= 0

18 plot(ccf2$lag[positive_lag2], ccf2$acf[positive_lag2

], type = ”h”,
19 main = ” S e r i e s 2 * S e r i e s 1”,
20 xlab = ”Lag”, ylab = ”CCF”)
21 abline(h = 0)

R code Exa 8.6.1 Multivariate models fitted on stock data

1 # Page No . 249
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer may vary to u n s p e c i f i e d f u n c t i o n i n problem
4 library(tidyr)

5 library(vars)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

8 pcs$dow <- as.numeric(pcs$dow)

9 pcs$aus <- as.numeric(pcs$aus)

10 pcs_ts <- ts(pcs)

11 var_model <- VAR(pcs_ts,p=1,type = ” none ”)
12 summary(var_model)

R code Exa 8.6.2 Multivariate models fitted on sales data

1 # Page No . 249

65



2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(vars)

4 library(tidyr)

5 library(stringr)

6 library(dplyr)

7 ls <- read.csv(”LS2 .TSM”,header = FALSE)

8 colnames(ls)[1] <- ” l l ”
9 ls$ll <- trimws(ls$ll,which = ” l e f t ”)
10 lts <- separate(ls , col = ll , into = c(” l d ”, ” s a l e s ”

), sep = ”\\ s+”)
11 lts$ld <- as.numeric(lts$ld)

12 lts$sales <- as.numeric(lts$sales)

13 lts <- ts(lts)

14 ltds <- diff(lts , lag = 1)

15 lag <-VARselect(lts ,lag.max =10)

16 optimal <- lag$selection

17 estim <- VAR(ltds ,p=5,type = ” none ”)
18 summary(estim)

19 estim$varresult

R code Exa 8.6.3 VAR 1 model on stock data

1 # Page No . 251
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(tidyr)

4 library(itsmr)

5 library(vars)

6 pc <- read.csv(”DJAOPC2 .TSM”, header = FALSE)

7 pcs <- separate(pc , col = 1, into = c(”dow”, ” aus ”),
sep = ”\\ s+”)

8 pcs$dow <- as.numeric(pcs$dow)

9 pcs$aus <- as.numeric(pcs$aus)

10 pcs_ts <- ts(pcs)
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11 var_model <- VAR(pcs_ts,p=1,type = ” none ”)
12 summary(var_model)

13 k <- 9

14 n <- length(pcs_ts)

15 log_likelihood <- LogLik(var_model)

16 aicc <- -2 * log_likelihood + 2 * k + (2 * k * (k +

1)) / (n - k - 1)

17 arm <- autofit(ts(pcs$aus),p=0:2,q=0)

18 print(arm)
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Chapter 9

State Space Models

R code Exa 9.2.1 Random walk plus noise model

1 # Page no . 2 6 1
2 # Answer v a r i e s due to randomness
3 set.seed (46)

4 n <- 100

5 sigma_v <- 4

6 sigma_w <- 8

7 M <- cumsum(rnorm(n, mean = 0, sd = sqrt(sigma_w)))

8 W <- rnorm(n, mean = 0, sd = sqrt(sigma_v))

9 Y <- M + W

10 plot (1:n, M, type = ” l ”, col = ” b lue ”, xlab = ”Time”
, ylab = ” Value ”,

11 main = ”Random Walk Plus No i s e Model ”)
12 points (1:n, Y, pch = 15, col = ” red ”)
13 acf(diff(Y), lag.max = 20)

R code Exa 9.5.2 International airline passengers

1 # Page No . 278
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2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Adequate data not p rov id ed i n example
4 library(ggplot2)

5 library(MASS)

6 library(KFAS)

7 airpass <- read.csv(”AIRPASS .TSM”, header = FALSE)

8 colnames(airpass)[1] <- ” pas s ”
9 ggplot(airpass , aes(x = seq(as.Date(”1949−01−01”),

as.Date(”1960−12−01”), by = ”month”), y = pass))

+

10 geom_point() +

11 geom_line() +

12 labs(title = ” Air p a s s e n g e r s ( Jan 1949 − Dec 1960)
”,

13 x = ”Time”,
14 y = ” P a s s e n g e r s ”) +

15 theme_minimal ()

16 pass <- ts(airpass$pass)

R code Exa 9.8.3 Polio in the USA

1 # Page No . 292
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 library(dplyr)

5 polio <- read.csv(”POLIO .TSM”, header = FALSE)

6 colnames(polio)[1] <- ” po l ”
7 ggplot(polio , aes(x = seq(as.Date(”1970−01−01”), as.

Date(”1983−12−01”), by = ”month”), y = pol)) +

8 geom_point() +

9 geom_line() +

10 labs(title = ” P o l i o i n US ( Jan 1970 − Dec 1983) ”,
11 x = ”Time”,
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12 y = ” P o l i o c a s e s ”) +

13 theme_minimal ()

14 polio$Month <- 1: length(polio$pol)

15 polio <- polio %>%

16 mutate(

17 t = Month ,

18 u1 = 1,

19 u2 = t / 1000,

20 u3 = cos(2 * pi * t / 12),

21 u4 = sin(2 * pi * t / 12),

22 u5 = cos(2 * pi * t / 6),

23 u6 = sin(2 * pi * t / 6)

24 )

25 model <- lm(pol ~ u1 + u2 + u3 + u4 + u5 + u6 , data

= polio)

26 polio$Trend <- fitted(model)

27 ggplot(polio , aes(x = Month)) +

28 geom_point(aes(y = pol , color = ” Actua l Cases ”)) +

29 geom_line(aes(y = Trend , color = ” Trend Est imate ”)
) +

30 labs(

31 title = ” Trend Est imate f o r Monthly U. S . P o l i o
Cases ”,

32 x = ”Month”,
33 y = ”Number o f Cases ”,
34 color = ” Legend ”
35 ) +

36 scale_color_manual(values = c(” Actua l Cases ” = ”
b lue ”, ” Trend Est imate ” = ” red ”)) +

37 theme_minimal ()

R code Exa 9.8.7 Goals Scored by England Against Scotland

1 # Page No . 299
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/
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s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 # Answer v a r i e s due to i n a d e q u a t e data
4 library(ggplot2)

5 library(tidyr)

6 library(itsmr)

7 goals <- read.table(”GOALS.TSM”, header = FALSE)

8 colnames(goals)[1] <- ” g o a l ”
9 colnames(goals)[2] <-” Year ”
10 # Figur e 9−8
11 ggplot(goals , aes(x = Year , y = goal)) +

12 geom_point() +

13 geom_line(col= ’ b l u e ’ ) +

14 labs(title = ” Goals by England ”,
15 x = ” Years ”,
16 y = ” Goals ”) +

17 theme_minimal ()

18 # Figur e 9−9
19 ggplot(na.omit(goals), aes(x = factor(goal))) +

20 geom_bar() +

21 xlab(” Goals ”) +

22 ylab(”Count”) +

23 ggtitle(” Histogram o f Goals ”) +

24 theme_minimal ()

25

26 data <- na.omit(goals)

27 delta_hat <- 0.844

28 alpha_0 <- 0.154

29 lambda_0 <- delta_hat / (1 - delta_hat)

30 n <- nrow(data)

31 alpha <- numeric(n);lambda <- numeric(n);pred <-

numeric(n)

32 alpha [1] <- alpha_0

33 lambda [1] <- lambda_0

34 for (t in 2:n) {

35 alpha[t] <- alpha[t-1] + delta_hat * (data$goal[t

-1] - alpha[t-1])

36 lambda[t] <- lambda[t-1] + delta_hat * (1 - lambda

[t-1])
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37 pred[t] <- alpha[t] / (1 + lambda[t])

38 }

39

40 ggplot(data.frame(Time = data$Year , pred = pred),

aes(x = Time , y = pred)) +

41 geom_line(color = ” b lue ”) +

42 geom_point(data = data , aes(x = Year , y = goal),

color = ” red ”) +

43 xlab(” Year ”) +

44 ylab(” Goals ”) +

45 ggtitle(”One−Step P r e d i c t o r s f o r Goals Data”) +

46 theme_minimal ()
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Chapter 10

Forecasting Techniques

R code Exa 10.1.1 Predicted deaths by ARAR algorithm

1 # Page No . 312
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(itsmr)

4 library(forecast)

5 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

6 colnames(deaths)[1] <- ” death ”
7 dts <- ts(deaths$death)

8 arar_model <- arar(dts ,h=24,opt=2)

R code Exa 10.2.1 Holt Winters non seasonal forecast

1 # Page No . 316
2 # Answer may vary due to the na tu r e o f f o r e c a s t

f u n c t i o n .
3 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
4 library(forecast)
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5 deaths <- read.csv(”DEATHS.TSM”, header = FALSE)

6 colnames(deaths)[1] <- ” death ”
7 dts <- ts(deaths$death , freq=12, start = 1973)

8 hw_model <- HoltWinters(dts , gamma = FALSE)

9 forecast_values <- forecast :: forecast(hw_model , n.

steps =2)

10 plot(forecast_values , main=” Holt−Winters F o r e c a s t ”,
xlab=”Time”, ylab=” Values ”)

11 lines(dts , col=” b lue ”)

R code Exa 10.3.1 Holt Winters seasonal forecast

1 # Page No . 316
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(forecast)

4 deaths <- read.delim(”DEATHS.TSM”, header = FALSE)

5 colnames(deaths)[1] <- ” death ”
6 dts <- ts(deaths$death , freq=12, start = 1973)

7 hw_model <- HoltWinters(dts)

8 forecast_values <- forecast :: forecast(hw_model , h

=24)

9 plot(forecast_values , main=” Holt−Winters F o r e c a s t ”,
xlab=”Time”, ylab=” Values ”)

10 lines(dts , col=” b lue ”)
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Chapter 11

Further Topics

R code Exa 11.4.1 Annual Minimum Water Levels in the Nile

1 # Page No . 340
2 # Downloading l i n k : h t t p s : // s t o r a g e . g o o g l e a p i s . com/

s p r i n g e r−e x t r a s / z i p / 2002/978−0−387−21657−7. z i p
3 library(ggplot2)

4 nile <- read.csv(”NILE .TSM”, header = FALSE)

5 colnames(nile)[1] <- ” water ”
6 plot(nile$water ,xlab=” t ime ”,ylab=” water l e v e l ”,main=

” N i l e r i v e r ”,type = ’ l ’ )
7 acf(nile$water ,main=”ACF”)
8 best_model <- auto.arima(nile$water , stepwise =

FALSE , ic=” a i c c ”, approximation = FALSE)

9 print(best_model$aicc)

10 best_arfima <-arfima(nile$water ,model = best_model)

11 print(best_arfima$aicc)
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